Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 4 doi: 10.1016/j.eng.2018.07.001

Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow

a Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

b Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China

c Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

d International Maize and Wheat Improvement Center, Texcoco 56237, Mexico

Received: 2017-06-24 Revised: 2018-01-09 Accepted: 2018-01-11 Available online: 2018-07-07

Next Previous

Abstract

In recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has been shown to be an effective genetic resource for transferring agronomically important genes from wild relatives to common wheat. It provides new sources for yield potential, drought tolerance, disease resistance, and nutrient-use efficiency when bred conventionally with modern wheat varieties. SHW is becoming more and more important for modern wheat breeding. Here, we review the current status of SHW generation, study, and application, with a particular focus on its contribution to wheat breeding. We also briefly introduce the most recent progress in our understanding of the molecular mechanisms for growth vigor in SHW. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study and applications of SHW in wheat improvement that are essential to meet global food demand.

References

[ 1 ] Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 1944;19:889–90. link1

[ 2 ] Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 2013;110:99–104. link1

[ 3 ] Matsuoka Y. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 2011;52(5):750–64. link1

[ 4 ] McFadden ES, Sears ER. The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 1946;37(3):81–9. link1

[ 5 ] Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 2007;316(5833):1862–6. link1

[ 6 ] Rafique K, Rauf CA, Gul A, Bux H, Ali A, Memon RA, et al. Evaluation of D- genome synthetic hexaploid wheats and advanced derivatives for powdery mildew resistance. Pak J Bot 2017;49(2):735–43. link1

[ 7 ] Zhang LQ, Liu DC, Zheng YL, Yan ZH, Dai SF, Li YF, et al. Frequent occurrence of unreduced gametes in Triticum turgidum–Aegilops tauschii hybrids. Euphytica 2010;172(2):285–94. link1

[ 8 ] Hao M, Luo JT, Zeng DY, Zhang L, Ning SZ, Yuan ZW, et al. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3-Genes Genom Genet 2014;4(10):1943–53. link1

[ 9 ] Xu SJ, Dong YS. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome 1992;35(3):379–84. link1

[10] Luo J, Hao M, Zhang L, Chen J, Zhang L, Yuan Z, et al. Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. Int J Mol Sci 2012;13(10):12533–43. link1

[11] Liu DC, Hao M, Li AL, Zhang LQ, Zheng YL, Mao L. Allopolyploidy and interspecific hybridization for wheat improvement. In: Mason AS, editor. Polyploidy and hybridization for crop improvement. Boca Raton: CRC Press; 2016. p. 27–52.

[12] Das MK, Bai GH, Mujeeb-Kazi A, Rajaram S. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet Resour Crop Evol 2016;63(8):1285–96. link1

[13] Pritchard DJ, Hollington PA, Davies WP, Gorham J, de Leon JLD, Mujeeb-Kazi AK. K+/Na+ discrimination in synthetic hexaploid wheat lines: transfer of the trait for K+/Na+ discrimination from Aegilops tauschii into a Triticum turgidum background. Cereal Res Commun 2002;30(3):261–7. link1

[14] Mujeeb-Kazi A, Gul A, Farooq M, Rizwan S, Ahmad I. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res 2008;59(5):391–8. link1

[15] Masood R, Ali N, Jamil M, Bibi K, Rudd JC, Mujeeb-Kazi A. Novel genetic diversity of the alien D-genome synthetic hexaploid wheat (2n = 6x = 42, AABBDD) germplasm for various phenology traits. Pak J Bot 2016;48 (5):2017–24. link1

[16] Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 2006;149(3):289–301. link1

[17] McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993– 2005. Public Health Nutr 2009;12(4):444–54. link1

[18] Calderini DF, Ortiz-Monasterio I. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 2003;43(1):141–51. link1

[19] Thomas J, Nilmalgoda S, Hiebert C, McCallum B, Humphreys G, DePauw R. Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci 2010;50(6):2310–7. link1

[20] Guzman C, Medina-Larque AS, Velu G, Gonzalez-Santoyo H, Singh RP, Huerta- Espino J, et al. Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. J Cereal Sci 2014;60(3):617–22. link1

[21] Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 2009;36(9):539–46. link1

[22] Tahir R, Bux H, Kazi AG, Rasheed A, Napar AA, Ajmal SU, et al. Evaluation of Pakistani elite wheat germplasm for T1BL.1RS chromosome translocation. J Agric Sci Technol 2014;16(2):421.

[23] Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, et al. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci USA 2016;113(45):12856–61. link1

[24] Periyannan S, Bansal U, Bariana H, Deal K, Luo MC, Dvorak J, et al. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 2014;127(4):947–55. link1

[25] Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 2013;341(6147):786–8. link1

[26] Singh RP, Mujeeb-Kazi A, Huerta-Espino J. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 1998;88(9):890–4. link1

[27] Arraiano LS, Brading PA, Brown JKM. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol 2001;50(3):339–46. link1

[28] Tabib Ghaffary SM, Faris JD, Friesen TL, Visser RG, van der Lee TA, Robert O, et al. New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 2012;124(1):125–42. link1

[29] Tadesse W, Hsam SLK, Wenzel G, Zeller FJ. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. Aegilops tauschii Coss.). Crop Sci 2006;46:1212–7. link1

[30] Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet 2007;114(5):855–62. link1

[31] Lutz J, Hsam SLK. Limpert E, Zeller FJ. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 1995;74(2):152–6. link1

[32] Weng Y, Li W, Devkota RN, Rudd JC. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 2005;110(3):462–9. link1

[33] Azhaguvel P, Rudd JC, Ma Y, Luo MC, Weng Y. Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii. Theor Appl Genet 2012;124(3):555–64. link1

[34] Nkongolo KK, Quick JS, Limin AE, Fowler DB. Sources and inheritance of resistance to Russian wheat aphid in Triticum species, amphiploids and Triticum tauschii. Can J Plant Sci 1991;71(3):703–8. link1

[35] Thomas JB, Conner RI. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci 1986;26(3):527–30. link1

[36] Liu XM, Gill BS, Chen MS. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet 2005;111(2):243–9. link1

[37] Wang T, Xu SS, Harris MO, Hu J, Liu L, Cai X. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 2006;113(4):611–8. link1

[38] Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri LC, et al. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breed 2016;36(9):127. link1

[39] Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One 2014;9(8):e105593. link1

[40] Kazi AG, Rasheed A, Mahmood T, Mujeeb-Kazi A. Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pak J Bot 2012;44(3):1021–8. link1

[41] Liu M, Zhang CZ, Yuan CL, Zhang LQ, Huang L, Wu JJ, et al. Stripe rust resistance in Aegilops tauschii germplasm. Crop Sci 2013;53:2014–20. link1

[42] Huang L, Zhang LQ, Liu BL, Yan ZH, Zhang B, Zhang HG, et al. Molecular tagging of a stripe rust resistance gene in Aegilops tauschii. Euphytica 2011;179 (2):313–8. link1

[43] Wang LM, Zhang ZY, Liu HJ, Xu SC, He MZ, Liu HX, et al. Identification, gene postulation and molecular tagging of a stripe rust resistance gene in synthetic wheat CI142. Cereal Res Commun 2009;37(2):209–15. link1

[44] Singh RP, Nelson JC, Sorrells ME. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 2000;40(4):1148–55. link1

[45] Li GQ, Li ZF, Yang WY, Zhang Y, He ZH, Xu SC, et al. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet 2006;112(8):1434–40. link1

[46] Ma H, Singh RP, Mujeeb-kazi A. Suppression expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum T. tauschii). Euphytica 1995;83(2):87–93. link1

[47] Trethowan RM, Mujeeb-Kazi A. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 2008;48 (4):1255–65. link1

[48] Dreccer AF, Borgognone AG, Ogbonnaya FC, Trethowan RM, Winter B. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Res 2007;100(2– 3):218–28. link1

[49] Munns R, Schachtman DP, Condon AG. The significance of a 2-phase growth- response to salinity in wheat and barley. Aust J Plant Physiol 1995;22 (4):561–9. link1

[50] Jamil M, Ali A, Akbar KF, Ghafoor A, Napar AA, Asad S, et al. Relationship among water use efficiency, canopy temperature, chlorophyll content and spot blotch (Cochliobolus sativus) resistance in diverse wheat (Triticum aestivum L.) germplasm. Pak J Bot 2016;48(3):993–8. link1

[51] Van Ginkel M, Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 2007;104(1–3):86–94. link1

[52] Jafarzadeh J, Bonnett D, Jannink JL, Akdemir D, Dreisigacker S, Sorrells ME. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS One 2016;11(9):e0162860. link1

[53] Iehisa JCM, Takumi S. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst 2012;87(1):9–18. link1

[54] Liu DC, Lan XJ, Wang ZR, Zheng YL, Zhou YH, Yang JL, et al. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolerance. Genet Resour Crop Evol 1998;45(6):495–8. link1

[55] Gatford KT, Hearnden P, Ogbonnaya F, Eastwood RF, Halloran GM. Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii. Euphytica 2002;126(1):67–76. link1

[56] Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 2008;178(3):1725–36. link1

[57] Okamoto Y, Nguyen AT, Yoshioka M, Iehisa JCM, Takumi S. Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci 2013;63(4):423–9. link1

[58] Rattey A, Shorter R, Chapman S, Dreccer F, van Herwaarden A. Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci 2009;60(8):717–29. link1

[59] Rattey AR, Shorter R, Chapman SC. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Grain yield components and physiological traits. Field Crops Res 2011;124 (2):195–204. link1

[60] Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ. Physiological processes associated with wheat yield progress in the UK. Crop Sci 2005;45 (1):175–85. link1

[61] Cooper JK, Ibrahim AMH, Rudd J, Malla S, Hays DB, Baker J. Increasing hard winter wheat yield potential via synthetic wheat: I. Path-coefficient analysis of yield and its components. Crop Sci 2012;52(5):2014–22. link1

[62] Del Blanco IA, Rajaram S, Kronstad WE. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 2001;41(3):670–6. link1

[63] Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL. Advanced backcross QTL analysis of a hard winter wheat synthetic wheat population. Theor Appl Genet 2006;112(5):787–96. link1

[64] Li J, Wan HS, Yang WY. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 2014;52 (6):735–42. link1

[65] Li J, Wei HT, Hu XR, Li CS, Tang YL, Liu DC, et al. Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agron Sin 2011;37(2):255–62. link1

[66] Wan HS, Yang YM, Li J, Zhang ZF, Yang W. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 2015;205(1):275–85. link1

[67] Villareal RL, Fuentes-Davila G, Mujeeb-Kazi A, Rajaram S. Inheritance of resistance to Tilletia indica (Mitra) in synthetic hexaploid wheat Triticum aestivum crosses. Plant Breed 1995;114(6):547–8. link1

[68] Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 2014;26 (5):1878–900. link1

[69] Mestiri I, Chagué V, Tanguy AM, Huneau C, Huteau V, Belcram H, et al. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 2010;186(1):86–101. link1

[70] Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 2001;13 (8):1749–59. link1

[71] Zhao N, Xu L, Zhu B, Li M, Zhang H, Qi B, et al. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome 2011;54(8):692–9. link1

[72] Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, et al. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 2011;188(3):499–510. link1

[73] Zhang HK, Bian Y, Gou XW, Dong YZ, Rustgi S, Zhang BJ, et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci USA 2013;110 (48):19466–71. link1

[74] Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA 2013;110(9):3447–52. link1

[75] Akhunova AR, Matniyazov RT, Liang H, Akhunov ED. Homoeolog- specific transcriptional bias in allopolyploid wheat. BMC Genomics 2010;11:505. link1

[76] Bottley A, Xia GM, Koebner RMD. Homoeologous gene silencing in hexaploid wheat. Plant J 2006;47(6):897–906. link1

[77] Chagué V, Just J, Mestiri I, Balzergue S, Tanguy AM, Huneau C, et al. Genome- wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol 2010;187(4):1181–94. link1

[78] Chelaifa H, Chagué V, Chalabi S, Mestiri I, Arnaud D, Deffains D, et al. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New Phytol 2013;197(3):730–6. link1

[79] He P, Friebe BR, Gill BS, Zhou JM. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 2003;52(2):401–14. link1

[80] Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 2009;181(3):1147–57. link1

[81] Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, et al. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 2012;10:3. link1

[82] Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 2006;172 (1):507–17. link1

[83] Rapp RA, Udall JA, Wendel JF. Genomic expression dominance in allopolyploids. BMC Biol 2009;7:18. link1

[84] Lu J, Zhang C, Baulcombe DC, Chen ZJ. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA 2012;109(14):5529–34. link1

[85] Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 2006;20(7):759–71. link1

[86] Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, et al. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 2009;106 (42):17835–40. link1

[87] Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 2000;12(9):1551–68. link1

[88] Wang J, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 2004;167(4):1961–73. link1

[89] Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, et al. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 2011;188(2):263–72. link1

[90] Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 2013;14(7):471–82. link1

[91] Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013;496 (7443):91–5. link1

[92] Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. The draft genome of Triticum urartu. Nature 2013;496:87–90. link1

[93] Mayer KFX, Rogers J, Dole el J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014;345(6194):1251788. link1

[94] Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 2017;357(6346):93–7. link1

[95] Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. The first near- complete assembly of the hexaploid bread wheat genome Triticum aestivum. Gigascience 2017;6(11):1–7. link1

[96] Zhao G, Zou C, Li K, Wang K, Li T, Gao L, et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 2017;3 (12):946–55. link1

[97] Farrakh S, Khalid S, Rafique A, Riaz N, Mujeeb-Kazi A. Identification of stripe rust resistant genes in resistant synthetic hexaploid wheat accessions using linked markers. Plant Genet Resour 2016;14(3):219–25. link1

[98] Islam MS, Brown-Guedira G, van Sanford D, Ohm H, Dong YH, McKendry AL. Novel QTL associated with the Fusarium head blight resistance in Truman soft red winter wheat. Euphytica 2016;207(3):571–92. link1

Related Research