Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 5 doi: 10.1016/j.eng.2021.02.005

Mechanically Strong Proteinaceous Fibers: Engineered Fabrication by Microfluidics

a Institute of Organic Chemistry, University of Ulm, Ulm 89081, Germany
b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
c Department of Chemistry, Tsinghua University, Beijing 100084, China
d State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Received: 2020-09-18 Revised: 2020-12-12 Accepted: 2021-02-08 Available online: 2021-04-02

Next Previous

Abstract

Lightweight and mechanically strong natural silk fibers have been extensively investigated over the past decades. Inspired by this research, many artificial spinning techniques (wet spinning, dry spinning, electrospinning, etc.) have been developed to fabricate robust protein fibers. As the traditional spinning methods provide poor control over the as-spun fibers, microfluidics has been integrated with these techniques to allow the fabrication of biological fibers in a well-designed manner, with simplicity and cost efficiency. The mechanical behavior of the developed fibers can be precisely modulated by controlling the type and size of microfluidic channel, flow rate, and shear force. This technique has been successfully used to manufacture a broad range of protein fibers, and can accelerate the production and application of protein fibers in various fields. This review outlines recent progress in the design and fabrication of protein-based fibers based on microfluidics. We first briefly discuss the natural spider silk-spinning process and the microfluidics spinning process. Next, the fabrication and mechanical properties of regenerated protein fibers via microfluidics are discussed, followed by a discussion of recombinant protein fibers. Other sourced protein fibers are also reviewed in detail. Finally, a brief outlook on the development of microfluidic technology for producing protein fibers is presented.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, et al. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv Mater 2020;32(6):e1906360. link1

[ 2 ] Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009;48(20):3584–96. link1

[ 3 ] Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007;32(8– 9):991–1007. link1

[ 4 ] Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329(5991):528–31. link1

[ 5 ] Lewis RV. Spider silk: ancient ideas for new biomaterials. Chem Rev 2006;106 (9):3762–74. link1

[ 6 ] Sun J, Li B, Wang F, Feng J, Ma C, Liu K, et al. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem 2020;2:1669–77. link1

[ 7 ] Zhang J, Liu Y, Sun J, Gu R, Ma C, Liu K. Biological fibers based on naturally sourced proteins: mechanical investigation and applications. Mater Today Adv 2020;8:100095. link1

[ 8 ] Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, et al. Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2009;2(4):1908–22. link1

[ 9 ] DeFrates K, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, et al. Proteinbased fiber materials in medicine: a review. Nanomaterials 2018;8(7):457. link1

[10] Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol 2008;26(5):244–51. link1

[11] Spiess K, Lammel A, Scheibel T. Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 2010;10(9):998–1007. link1

[12] Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering 2019;5(4):777–94. link1

[13] Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005;26(30):5999–6008. link1

[14] Kumar S, Singh AP, Senapati S, Maiti P. Controlling drug delivery using nanosheet-embedded electrospun fibers for efficient tumor treatment. ACS Appl Bio Mater 2019;2(2):884–94. link1

[15] Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater 2019;2(3):952–69. link1

[16] Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002;295(5554):472–6. link1

[17] Li Y, Li J, Sun J, He H, Li B, Ma C, et al. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew Chem Int Ed Engl 2020;59(21):8148–52. link1

[18] Magaz A, Roberts AD, Faraji S, Nascimento TRL, Medeiros ES, Zhang W, et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules 2018;19(12):4542–53. link1

[19] SunM, Zhang Y, Zhao Y, Shao H, Hu X. The structure-property relationships of artificial silk fabricated by dry-spinning process. J Mater Chem 2012;22(35):18372–9. link1

[20] Dong Z, Zhu H, Hang Y, Liu G, Jin W. Polydimethylsiloxane (PDMS) composite membrane fabricated on the inner surface of a ceramic hollow fiber: from single-channel to multi-channel. Engineering 2020;6(1):89–99. link1

[21] Koeppel A, Holland C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater Sci Eng 2017;3(3):226–37. link1

[22] Zheng Ke, Ling S. De novo design of recombinant spider silk proteins for material applications. Biotechnol J 2019;14(1):e1700753. link1

[23] Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol 2015;11(5):309–15. link1

[24] Mercader C, Lucas A, Derre A, Zakri C, Moisan S, Maugey M, et al. Kinetics of fiber solidification. Proc Natl Acad Sci USA 2010;107(43):18331–5. link1

[25] Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL. Recombinant DNA production of spider silk proteins. Microb Biotechnol 2013;6(6):651–63. link1

[26] Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev 2013;113(4):2550–83. link1

[27] Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 2020;92(1):150–68. link1

[28] Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 2019;31(52):e1903733. link1

[29] Shi X, Ostrovidov S, Zhao Y, Liang X, Kasuya M, Kurihara K, et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv Funct Mater 2015;25 (15):2250–9. link1

[30] McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic manufacturing of alginate fibers with encapsulated astrocyte cells. ACS Appl Bio Mater 2019;2(4):1603–13. link1

[31] Shang L, Wang Y, Yu Y, Wang J, Zhao Z, Xu H, et al. Bio-inspired stimuliresponsive graphene oxide fibers from microfluidics. J Mater Chem A Mater Energy Sustain 2017;5(29):15026–30. link1

[32] Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Bioinspired helical microfibers from microfluidics. Adv Mater 2017;29(18):1605765. link1

[33] Zhang J, Sun J, Li Bo, Yang C, Shen J, Wang N, et al. Robust biological fibers based on widely available proteins: facile fabrication and suturing application. Small 2020;16(8):e1907598. link1

[34] Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 2012;24 (31):4271–7. link1

[35] Wilson EK. Wearable sweat sensors. Engineering 2019;5(3):359–60. link1

[36] Chen F, Fraietta JA, June CH, Xu Z, Joseph Melenhorst J, Lacey SF. Engineered T cell therapies from a drug development viewpoint. Engineering 2019;5(1): 140–9. link1

[37] Chen X, Shao Z, Vollrath F. The spinning processes for spider silk. Soft Matter 2006;2(6):448–51. link1

[38] Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410(6828):541–8. link1

[39] Yang Y, Chen X, Shao Z, Zhou P, Porter D, Knight DP, et al. Toughness of spider silk at high and low temperatures. Adv Mater 2005;17(1):84–8. link1

[40] Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017; 114:121–43. link1

[41] Steudle LM, Frank E, Ota A, Hageroth U, Henzler S, Schuler W, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: an integrated approach. Macromol Mater Eng 2017;302(4):1600441. link1

[42] Kwak EA, Ahn S, Jaworski J. Microfabrication of custom collagen structures capable of guiding cell morphology and alignment. Biomacromolecules 2015;16(6):1761–70. link1

[43] Kinahan ME, Filippidi E, Köster S, Hu X, Evans HM, Pfohl T, et al. Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 2011;12(5):1504–11. link1

[44] Luo J, Zhang L, Peng Q, Sun M, Zhang Y, Shao H, et al. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 2014;66: 319–24. link1

[45] Luo J, Zhang Y, Huang Y, Shao H, Hu X. A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sens Actuators B Chem 2012;162 (1):435–40. link1

[46] Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002;418 (6899):741. link1

[47] Mittal N, Ansari F, Gowda.V K, Brouzet C, Chen P, Larsson PT, et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 2018;12(7):6378–88. link1

[48] Mittal N, Jansson R, Widhe M, Benselfelt T, Håkansson KMO, Lundell F, et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 2017;11(5):5148–59. link1

[49] Lu Li, Fan S, Niu Q, Peng Q, Geng L, Yang G, et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip. ACS Sustain Chem Eng 2019;7(17):14765–74. link1

[50] Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 2015;27(13):2189–94. link1

[51] Tao Hu, Kaplan DL, Omenetto FG. Silk materials—a road to sustainable high technology. Adv Mater 2012;24(21):2824–37. link1

[52] Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 2010;107 (32):14059–63. link1

[53] Venkatesan H, Chen J, Hu J. Fibers made of recombinant spidroins—a brief review. AATCC J Res 2019;6(3):37–40. link1

[54] Peng Q, Zhang Y, Lu Li, Shao H, Qin K, Hu X, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 2016;6 (1):36473. link1

[55] Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet spinning and drawing of human recombinant collagen. ACS Biomater Sci Eng 2016;2(3):349–60. link1

[56] Chiang CY, Mello CM, Gu J, Silva ECCM, Van Vliet KJ, Belcher AM. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv Mater 2007;19(6):826–32. link1

[57] Fu J, Guerette PA, Pavesi A, Horbelt N, Lim CT, Harrington MJ, et al. Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale 2017;9 (35):12908–15. link1

[58] Kim W, Chaikof EL. Recombinant elastin-mimetic biomaterials: emerging applications in medicine. Adv Drug Deliv Rev 2010;62(15):1468–78. link1

[59] He H, Yang C, Wang F, Wei Z, Shen J, Chen D, et al. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew Chem Int Ed Engl 2020;59(11):4344–8. link1

[60] Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 2015;6(1):6892. link1

[61] Madurga R, Gañán-Calvo AM, Plaza GR, Atienza JM, Guinea GV, Elices M, et al. Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. Polymer 2018;150:311–7. link1

[62] Copeland CG, Bell BE, Christensen CD, Lewis RV. Development of a process for the spinning of synthetic spider silk. ACS Biomater Sci Eng 2015;1(7):577–84. link1

[63] Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T.Microfluidics-produced collagen fibers show extraordinary mechanical properties. Nano Lett 2016;16(9): 5917–22. link1

[64] Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of crosslinked collagen fibers for neural tissue engineering applications. Biofabrication 2014;6(1):015012. link1

[65] Kamada A, Mittal N, Söderberg LD, Ingverud T, Ohm W, Roth SV, et al. Flowassisted assembly of nanostructured protein microfibers. Proc Natl Acad Sci USA 2017;114(6):1232–7. link1

[66] Kamada A, Levin A, Toprakcioglu Z, Shen Yi, Lutz-Bueno V, Baumann KN, et al. Modulating the mechanical performance of macroscale fibers through shearinduced alignment and assembly of protein nanofibrils. Small 2020;16(9):e1904190. link1

Related Research