Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 12, Issue 5 doi: 10.1016/j.eng.2021.03.018

Biotechnological Strategies of Riboflavin Biosynthesis in Microbes

a Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
b Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
c Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
d Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
e Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China
f Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Received: 2020-05-23 Revised: 2021-01-25 Accepted: 2021-03-03 Available online: 2021-05-08

Next Previous

Abstract

Riboflavin is an essential micronutrient for humans and must be obtained exogenously from foods or supplements. Numerous studies have suggested a major role of riboflavin in the prevention and treatment of various diseases. There are mainly three strategies for riboflavin synthesis, including total chemical synthesis, chemical semi-synthesis, and microbial fermentation, the latter being currently the most promising strategy. In recent years, flavinogenic microbes have attracted increasing attention. Fungi, including Eremothecium ashbyii and Ashbya gossypii, and bacteria, including Bacillus subtilis, Escherichia coli, and lactic acid bacteria, are ideal cell factories for riboflavin overproduction. Thus they are good candidates for enhancing the level of riboflavin in fermented foods or designing novel riboflavin bio-enriched foods with improved nutritional value and/or beneficial properties for human health. This review briefly describes the role of riboflavin in human health and the historical process of its industrial production, and then highlights riboflavin biosynthesis in bacteria and fungi, and finally summarizes the strategies for riboflavin overproduction based on both the optimization of fermentation conditions and the development of riboflavin-overproducing strains via chemical mutagenesis and metabolic engineering. Overall, this review provides an updated understanding of riboflavin biosynthesis and can promote the research and development of fermented food products rich in riboflavin.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Al-Shammary FJ, Zubair MU, Mian MS, Mian NAA. Analytical profile of riboflavin. In: Florey K, editor. Analytical profiles of drug substances. San Diego: Academic Press; 1990. p. 429–76. link1

[ 2 ] Wang DR. Advances in development and use of riboflavin. Beverage Ind 2013;16(3):21–2. Chinese.

[ 3 ] De La Rochette A, Silva E, Birlouez-Aragon I, Mancini M, Edwards AM, Morlière P. Riboflavin photodegradation and photosensitizing effects are highly dependent on oxygen and ascorbate concentrations. Photochem Photobiol 2000;72(6):815–20. link1

[ 4 ] World Health Organization, Food and Agriculture Organization of the United Nations. Requirements of vitamin A, thiamine, riboflavine and niacin: report of a joint FAO/WHO expert group. Rome: World Health Organization; 1967.

[ 5 ] Abrams S, Brabin BJ, Coulter JBS. Nutrition-associated disease. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, editors. Manson’s tropical diseases. London: Saunders Ltd.; 2014. p. 1151–67. link1

[ 6 ] Sebrell WH, Butler RE. Riboflavin deficiency in man. Public Health Rep 1939;54(48):2121–31. link1

[ 7 ] Braun K, Bromberg YM, Brzezinski A. Riboflavin deficiency in pregnancy. J Obstet Gynaecol Br Emp 1945;52(1):43–7. link1

[ 8 ] Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans 2000;28(4):283–96. link1

[ 9 ] Schramm M, Wiegmann K, Schramm S, Gluschko A, Herb M, Utermöhlen O, et al. Riboflavin (vitamin B2) deficiency impairs NADPH oxidase 2 (Nox2) priming and defense against Listeria monocytogenes. Eur J Immunol 2014;44 (3):728–41. link1

[10] Mosegaard S, Bruun GH, Flyvbjerg KF, Bliksrud YT, Gregersen N, Dembic M, et al. An intronic variation in SLC52A1 causes exon skipping and transient riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Mol Genet Metab 2017;122(4):182–8. link1

[11] Agte VV, Paknikar KM, Chiplonkar SA. Effect of riboflavin supplementation on zinc and iron absorption and growth performance in mice. Biol Trace Elem Res 1998;65(2):109–15. link1

[12] Xiang ZB, Dai CY, Zhu LQ. Physiological and biochemical characteristic and function of riboflavin. Food Res Dev 2004;25(6):90–2. link1

[13] Udhayabanu T, Karthi S, Mahesh A, Varalakshmi P, Manole A, Houlden H, et al. Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis. Mol Cell Biochem 2018;440(1–2):147–56. link1

[14] Murphy SP, Allen LH. Nutritional importance of animal source foods. J Nutr 2003;133(11 Suppl 2):3932S–5S. link1

[15] Magyar I. Effects of thiamin, riboflavin, pyridoxine, and nicotinic acid on the intestinal absorption of dextrose. Experientia 1949;5(5):208–9. link1

[16] Tucker RG, Mickelsen O, Keys A. The influence of sleep, work, diuresis, heat, acute starvation, thiamine intake and bed rest on human riboflavin excretion. J Nutr 1960;72(2):251–61. link1

[17] Revuelta JL, Ledesma-Amaro R, Jiménez A. Industrial production of vitamin B2 by microbial fermentation. In: Vandamme EJ, Revuelta JL, editors. Industrial biotechnology of vitamins, biopigments, and antioxidants. Weinheim: WileyVCH Verlag GmbH & Co. KGaA; 2016. p. 15–40.

[18] Yi H, Zhu W, Zhang H. Progress in riboflavin production process. China Food Addit 2003;4:14–8. Chinese. link1

[19] Dong W. Amplification of the purF and guaB genes in Bacillus subtilis and metabolic flux analysis of the engineered strain [dissertation]. Tianjin: Tianjin University; 2006. Chinese.

[20] Wu L. Study on the improvement of riboflavin manufacturing process [dissertation]. Tianjin: Tianjin University; 2010. Chinese.

[21] Wang H, Shen H, Sun YG, Gao C, Yang WD, Liang H. Research progress of the synthesis in riboflavin. Chem World 2012;5:307–9. link1

[22] Wickerham LJ, Flickinger MH, Johnston RM. The production of riboflavin by Ashbya gossypii. Arch Biochem 1946;9:95–8. link1

[23] Perlman D. Microbial process for riboflavin production. In: Pepplev HJ, Pevlman D, editors. Microbial technology. New York: Academic Press; 1979. p. 52–527. link1

[24] Revuelta JL, Ledesma-Amaro R, Lozano-Martinez P, Díaz-Fernández D, Buey RM, Jiménez A. Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol 2017;44(4–5):659–65. link1

[25] Pridham TG. Microbial synthesis of riboflavin. Econ Bot 1952;6(2):185–205. link1

[26] Bretzel W, Schurter W, Ludwig B, Kupfer E, Doswald S, Pfister M, et al. Commercial riboflavin production by recombinant Bacillus subtilis: downstream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J Ind Microbio Biot 1999;22(1):19–26. link1

[27] Chatwell L, Krojer T, Fidler A, Römisch W, Eisenreich W, Bacher A, et al. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 50 -phosphate reductase of Methanocaldococcus jannaschii. J Mol Biol 2006;359(5):1334–51. link1

[28] London N, Farelli JD, Brown SD, Liu C, Huang H, Korczynska M, et al. Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry 2015;54(2):528–37. link1

[29] Sarge S, Haase I, Illarionov B, Laudert D, Hohmann HP, Bacher A, et al. Catalysis of an essential step in vitamin B2 biosynthesis by a consortium of broad spectrum hydrolases. ChemBioChem 2015;16(17):2466–9. link1

[30] Nielsen P, Neuberger G, Fujii I, Bown DH, Keller PJ, Floss HG, et al. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8- ribityllumazine from pentose phosphates. J Biol Chem 1986;261(8):3661–9. link1

[31] Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 2000;20(1):153–67. link1

[32] Moine G, Hohmann HP, Kurth R, Paust J, Kaesler B. Vitamins, 6. B vitamins. In: Ullmann’s encyclopedia of industrial chemistry. 7th ed. Weinheim: WileyVCH Verlag GmbH & Co. KGaA; 2011. p. 234–82.

[33] Bacher A, Eberhardt S, Richter G. Biosynthesis of riboflavin. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, editors. Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: ASM Press; 1996. p. 657–64. link1

[34] Stahmann KP, Revuelta JL, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 2000;53(5):509–16. link1

[35] Lim SH, Choi JS, Park EY. Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famata: an overview. Biotechnol Bioproc E 2001;6(2):75–88. link1

[36] Kalingan AE, Liao CM. Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 2002;82(3):219–24. link1

[37] Hohmann HP, Stahmann KP. Biotechnology of riboflavin production. In: Mander L, Liu HW, editors. Comprehensive natural products II. Chemistry and biology. Oxford: Elsevier; 2010. p. 115–39.

[38] Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011;75(2):321–60. link1

[39] Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Increasing B vitamins in foods to prevent intestinal inflammation and cancer. In: Watson RR, Collier RJ, Preedy VR, editors. Nutrients in dairy and their implications on health and disease. Cambridge, MA: Academic Press; 2017. p. 193–204.

[40] Pujari V, Chandra TS. Physio-morphological changes in a riboflavin producer Eremothecium ashbyii DT1 and UV mutants in submerged fermentation. J Microbiol Biotechnol 2001;11(4):552–7. link1

[41] Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL. Increased riboflavin production by manipulation of inosine 50 -monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 2015;99 (22):9577–89. link1

[42] Ledesma-Amaro R, Serrano-Amatriain C, Jiménez A, Revuelta JL. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microb Cell Fact 2015;14(1):163. link1

[43] Lu WQ, Zhang KC, Wu PC. Batch-fed fermentation of riboflavin producing strain E. ashbyii. J Wuxi Univ Light Ind 2000;19(3):240–3. Chinese. link1

[44] Shi S. Studies on the improvement of riboflavin-producing Bacillus subtilis strain using systematic metabolic engineering [dissertation]. Tianjin: Tianjin University; 2009. Chinese.

[45] Kalingan AE, Krishnan MRV. Application of agro-industrial by-products for riboflavin production by Eremothecium ashbyii NRRL 1363. Appl Microbiol Biotechnol 1997;47(3):226–30. link1

[46] Kolonne S, Seviour RJ, McDougall BM. Effect of pH on exocellular riboflavin production by Eremothecium ashbyii. Biotechnol Lett 1994;16(1):79–84. link1

[47] Jiang X, Sun G, Wang S, Lai L. Breeding of feedback inhibition resistant mutants of Eremothecium ashbyii overproducing riboflavin. Acta Microbiol Sin 1997;37(2):95–100. Chinese. link1

[48] Yatsyshyn VY, Fedorovych DV, Sibirny AA. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production. J Ind Microbiol Biotechnol 2014;41(5):823–35. link1

[49] Dmytruk K, Lyzak O, Yatsyshyn V, Kluz M, Sibirny V, Puchalski C, et al. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol 2014;172:11–7. link1

[50] Dmytruk KV, Ruchala J, Fedorovych DV, Ostapiv RD, Sibirny AA. Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Candida famata. Biotechnol J 2020;15(7):e1900468. link1

[51] Aguiar TQ, Silva R, Domingues L. Ashbya gossypii beyond industrial riboflavin production: a historical perspective and emerging biotechnological applications. Biotechnol Adv 2015;33(8):1774–86. link1

[52] Stahmann KP, Arst HN, Althofer H, Revuelta JL, Monschau N, Schlupen C, et al. Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol 2001;3(9):545–50. link1

[53] Nieland S, Stahmann KP. A developmental stage of hyphal cells shows riboflavin overproduction instead of sporulation in Ashbya gossypii. Appl Microbiol Biotechnol 2013;97(23):10143–53. link1

[54] Wendland J, Walther A. Ashbya gossypii: a model for fungal developmental biology. Nat Rev Microbiol 2005;3(5):421–9. link1

[55] Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E, et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014;70:42–67. link1

[56] Kato T, Park EY. Riboflavin production by Ashbya gossypii. Biotechnol Lett 2012;34(4):611–8. link1

[57] Schwechheimer SK, Becker J, Peyriga L, Portais JC, Sauer D, Müller R, et al. Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/ MS, LC/MS, 1D, and 2D NMR. Metab Eng 2018;47:357–73. link1

[58] Schwechheimer SK, Becker J, Peyriga L, Portais JC, Wittmann C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions. Microb Cell Fact 2018;17(1):162. link1

[59] Jeong BY, Wittmann C, Kato T, Park EY. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. J Biosci Bioeng 2015;119(1):101–6. link1

[60] Silva R, Aguiar TQ, Domingues L. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii. J Biotechnol 2015;193:37–40. link1

[61] Aguiar TQ, Dinis C, Domingues L. Cre-loxP-based system for removal and reuse of selection markers in Ashbya gossypii targeted engineering. Fungal Genet Biol 2014;68:1–8. link1

[62] Park EY, Ito Y, Nariyama M, Sugimoto T, Lies D, Kato T. The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl Microbiol Biotechnol 2011;91(5):1315–26. link1

[63] Mironov VN, Kraev AS, Chikindas ML, Chernov BK, Stepanov AI, Skryabin KG. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Mol Gen Genet 1994;242(2):201–8. link1

[64] Chen T. Metabolic engineering by genome shuffling of riboflavin-producing Bacillus subtilis [dissertation]. Tianjin: Tianjin University; 2004. Chinese.

[65] Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, et al. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbio Biot 1999;22(1):8–18. link1

[66] Srivastava R, Kaur A, Sharma C, Karthikeyan S. Structural characterization of ribT from Bacillus subtilis reveals it as a GCN5-related N-acetyltransferase. J Struct Biol 2018;202(1):70–81. link1

[67] Kil YV, Mironovi VN, Gorishin IY, Kreneva RA, Perumov DA. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol Gen Genet 1992;233(3):483–6. link1

[68] Coquard D, Huecas M, Ott M, van Dijl JM, van Loon APGM, Hohmann HP. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 1997;254(1):81–4. link1

[69] Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 2002;30(14):3141–51. link1

[70] Long Q, Ji L, Wang H, Xie J. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem Biol Drug Des 2010;75 (4):339–47. link1

[71] Sklyarova SA, Kreneva RA, Perumov DA, Mironov AS. The characterization of internal promoters in the Bacillus subtilis riboflavin biosynthesis operon. Russ J Genet 2012;48(10):967–74. link1

[72] Thakur K, Tomar SK, De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 2016;9(4):441–51. link1

[73] Zhao X, Condruz S, Chen J, Jolicoeur M. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone– butanol–ethanol (ABE) fermentation. Sci Rep 2016;6(1):28307. link1

[74] Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, et al. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation. Appl Environ Microbiol 2012;78(5):1416–23. link1

[75] Legg DA, Beesch SC, inventors; Publicker, Commercial Alcohol C., assignee. Process for production of lower aliphatic acids by fermentatioin. United States Patent US 2370177. 1945 Feb 27.

[76] Cai X, Bennett GN. Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. J Ind Microbiol Biot 2011;38(8):1013–25. link1

[77] Zhao X, Kasbi M, Chen J, Peres S, Jolicoeur M. A dynamic metabolic flux analysis of ABE (acetone–butanol–ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product. Biotechnol Bioeng 2017;114(12):2907–19. link1

[78] Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 2014;13(1):104. link1

[79] Xu Z, Lin Z, Wang Z, Chen T. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chin J Chem Eng 2015;23(11):1834–9. link1

[80] Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006;9(3):268–74. link1

[81] Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 2011;22 (6):775–83. link1

[82] Kim J, Kim SI, Hong E, Ryu Y. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli. Protein Expr Purif 2016;127:98–104. link1

[83] Yoon SH, Jeong H, Kwon SK, Kim JF. Genomics, biological features, and biotechnological applications of Escherichia coli B: ‘‘Is B for better?!” In: Lee SY, editor. Systems biology and biotechnology of Escherichia coli. Dordrecht: Springer; 2009. p. 1–18. link1

[84] Schneider D, Duperchy E, Depeyrot J, Coursange E, Lenski R, Blot M. Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol 2002;2(1):18. link1

[85] Yoon S, Han MJ, Jeong H, Lee C, Xia XX, Lee DH, et al. Comparative multiomics systems analysis of Escherichia coli strains B and K-12. Genome Biol 2012;13(5):R37. link1

[86] Wang X, Wang Q, Qi Q. Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21(DE3) and MG1655. FEMS Microbiol Lett 2015;362(11):fnv071.

[87] Shi S, Chen T, Zhang Z, Chen X, Zhao X. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 2009;11(4–5):243–52. link1

[88] Shi S, Shen Z, Chen X, Chen T, Zhao X. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 2009;46(1):28–33. link1

[89] Liu S, Kang P, Cui Z, Wang Z, Chen T. Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli. Biotechnol Lett 2016;38(8):1307–14. link1

[90] Aizawa SI. Bacillus subtilis—the representative of Gram-positive bacteria. In: Aizawa SI, editor. The flagellar world. New York: Academic Press; 2014. p. 22–3. link1

[91] Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng 2001;91 (1):16–20. link1

[92] European Food Safety Authority. Scientific opinion on the safety and efficacy of Bacillus subtilis PB6 (Bacillus subtilis) as a feed additive for turkeys for fattening and turkeys reared for breeding. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA J 2013;11 (4):3176.

[93] Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biot 2015;99(2):681–91. link1

[94] Wang G, Bai L, Wang Z, Shi T, Chen T, Zhao X. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biot 2014;30(6):1893–900. link1

[95] Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, et al. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 1999;22(1):1–7. link1

[96] Tännler S, Zamboni N, Kiraly C, Aymerich S, Sauer U. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 2008;10(5):216–26. link1

[97] Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann HP, Sauer U. The Bacillus subtilis yqjI gene encodes the NADP+ -dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol 2004;186 (14):4528–34. link1

[98] Duan YX, Chen T, Chen X, Zhao XM. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biot 2010;85(6):1907–14. link1

[99] Pelley JW. Minor carbohydrate pathways: ribose, fructose, and galactose. In: Pelley JW, editor. Elsevier’s integrated review biochemistry. Philadelphia: Elsevier Saunders; 2012. p. 75–9. link1

[100] Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 2005;242(2):265–74. link1

[101] Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol 2011;102 (4):3934–40. link1

[102] Shi T, Wang Y, Wang Z, Wang G, Liu D, Fu J, et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb Cell Fact 2014;13(1):101. link1

[103] Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 2005;71 (12):8587–96. link1

[104] Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 2007;132 (2):99–109. link1

[105] Zhang X, Ban R, Liu L, Zhang R. Riboflavin production by a genetically modified Bacillus subtilis. Microbiol China 2017;44(1):59–67. Chinese.

[106] Cheng Y, Rao Z, Yang T, Man Z, Xu M, Zhang X. Construction of a new resistance plasmid capable of riboflavin production in Bacillus subtilis RF1. Chin J Appl Environ Biol 2015;21(3):435–40. Chinese.

[107] Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 2011;11(1):119. link1

[108] Wu QL, Chen T, Gan Yu, Chen X, Zhao XM. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biot 2007;76(4):783–94. link1

[109] Abd-Alla MH, Bagy MMK, Nafady NA, Morsy FM, Mahmoud GAE. Activation of riboflavin production by Bacillus subtilis (KU559874) and Bacillus tequilensis (KU559876). EC Bacteriol Virol Res 2016;2(4):131–50. link1

[110] Yan G, Du G, Li Y, Chen J, Zhong J. Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: application of a two-stage agitation speed control strategy. Process Biochem 2005;40 (2):963–8. link1

[111] Krishna Rao DV, Ramu CT, Rao JV, Narasu ML, Bhujanga Rao AKS. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation. J Ind Microbiol Biot 2008;35(9):991–1000. link1

[112] Zafar M, Kumar S, Kumar S, Dhiman AK. Modeling and optimization of poly (3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biot 2012;39(7):987–1001. link1

[113] Hu J, Lei P, Mohsin A, Liu X, Huang M, Li L, et al. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb Cell Fact 2017;16(1):150. link1

[114] Man ZW, Rao ZM, Cheng YP, Yang TW, Zhang X, Xu MJ, et al. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J Microbiol Biotechnol 2014;30 (2):661–7. link1

[115] Wan HG, Xue CL, Wang YD, Huang ZX, Peng YC. Effect of exogenous supplement on fermentative production of riboflavin by Bacillus subtilis. Food Ferment Ind 2014;40(4):13–7. Chinese.

[116] Oraei M, Razavi SH, Khodaiyan F. Optimization of effective minerals on riboflavin production by Bacillus subtilis subsp. subtilis ATCC 6051 using statistical designs. Avicenna J Med Biotechnol 2018;10(1):49–55. link1

[117] Battcock M, Azam-Ali S. Bacterial fermentations. In: Battcock M, Azam-Ali S, editors. Fermented fruits and vegetables: a global perspective. Rome: FAO Agricultural Services Bulletin 134; 1998. p. 43–56. link1

[118] Mozzi F. Lactic acid bacteria. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic Press; 2016. p. 501–8. link1

[119] da Silva Sabo S, Vitolo M, González JMD, Oliveira RPS. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res Int 2014;64:527–36. link1

[120] Quinto EJ, Jiménez P, Caro I, Tejero J, Mateo J, Girbés T. Probiotic lactic acid bacteria: a review. Food Nutr Sci 2014;05(18):1765–75. link1

[121] Davidson BE, Kordias N, Dobos M, Hillier AJ. Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek 1996;70(2–4):161–83. link1

[122] Torino MI, Font de Valdez G, Mozzi F. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Front Microbiol 2015;6:834.

[123] Kandasamy S, Kavitake D, Shetty PH. Lactic acid bacteria and yeast as starter cultures for fermented foods and their role in commercialization of fermented foods. In: Panda S, Shetty PH, editors. Innovations in technologies for fermented food and beverage industries. Cham: Springer; 2018. p. 25–52. link1

[124] LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, et al. B-group vitamin production by lactic acid bacteria—current knowledge and potential applications. J Appl Microbiol 2011;111(6):1297–309.

[125] Capozzi V, Russo P, Dueñas MT, López P, Spano G. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 2012;96(6):1383–94. link1

[126] Thakur K, Tomar SK, Brahma B, De S. Screening of riboflavin-producing lactobacilli by a polymerase-chain-reaction-based approach and microbiological assay. J Agric Food Chem 2016;64(9):1950–6. link1

[127] Capozzi V, Menga V, Digesu` AM, De Vita P, van Sinderen D, Cattivelli L, et al. Biotechnological production of vitamin B2-enriched bread and pasta. J Agric Food Chem 2011;59(14):8013–20. link1

[128] Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 2003;100(4):1990–5. link1

[129] Burgess CM, Smid EJ, Rutten G, van Sinderen D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 2006;5(1):24. link1

[130] Ge YY, Zhang JR, Corke H, Gan RY. Screening and spontaneous mutation of pickle-derived Lactobacillus plantarum with overproduction of riboflavin, related mechanism, and food application. Foods 2020;9(1):88. link1

[131] Pacheco Da Silva FF, Biscola V, LeBlanc JG, de Melo G, Franco BD. Effect of indigenous lactic acid bacteria isolated from goat milk and cheeses on folate and riboflavin content of fermented goat milk. Lebensm Wiss Technol 2016;71:155–61. link1

[132] Juarez del Valle M, Laiño JE, Savoy de Giori G, LeBlanc JG. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bioenriched soymilk. Food Res Int 2014;62:1015–9. link1

[133] Hayek SA, Ibrahim SA. Current limitations and challenges with lactic acid bacteria: a review. Food Nutr Sci 2013;4(11):73–87. link1

[134] Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009;6(2):187–94. link1

[135] Russo P, Capozzi V, Arena MP, Spadaccino G, Dueñas MT, López P, et al. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavinenriched bread. Appl Microbiol Biotechnol 2014;98(8):3691–700. link1

[136] Perkins JB, Pero JG, Sloma A, inventors; Hoffmann La Roche, assignee. Riboflavin overproducing strain of bacteria. European Patent EP 1001026A2. 2000 May 17.

[137] Perkins JB, Pero J. Vitamin biosynthesis. In: Sonenshein AL, Losick R, Hoch JA, editors. Bacillus subtilis and its closest relatives. Washington, DC: American Society of Microbiology; 2002. p. 271–86. link1

[138] Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 2004;70 (10):5769–77. link1

[139] LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ. A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 2006;22(6):645–51. link1

[140] Mack M, van Loon APGM, Hohmann HP. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 1998;180(4):950–5. link1

[141] Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng 2004;6(2):109–15. link1

[142] Jayashree S, Rajendhran J, Jayaraman K, Kalaichelvan G, Gunasekaran P. Improvement of riboflavin production by Lactobacillus fermentum isolated from yogurt. Food Biotechnol 2011;25(3):240–51. link1

[143] Liu ZW, Huang L, Kong LB, Cheng X, Tu XR, Li KT. Effects of stimulators on riboflavin biosynthesis by Eremothecium ashbyii. Acta Agriclturae Universitatis Jiangxiensis 2010;32(2):363–7. Chinese.

[144] Huang L, Cheng X, Tu XR, Li KT. Primary research on the optimization of riboflavin fermentation. by Eremothecium ashbyii. Guangdong Agric Sci 2010;6:154–6. Chinese.

Related Research