Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 10, Issue 3 doi: 10.1016/j.eng.2021.03.029

Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance

Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing 210029, China

Received: 2019-11-19 Revised: 2021-03-07 Accepted: 2021-03-23 Available online: 2021-10-07

Next Previous

Abstract

Organ transplant rejection (OTR) is a complex immune reaction involving multiple cells, and it determines graft survival and patient prognosis. At present, most transplant recipients are administered a combination of immunosuppressive and biological agents to protect them from OTR. However, immunosuppressive agents negatively impact the immune system of the patients, causing them to suffer from serious complications, such as chronic infection and malignant tumors. Therefore, a thorough understanding of the mechanisms involved in immune tolerance and immune rejection with regard to organ transplant (OT) is essential for developing better treatment options and improving patient outcomes. This article reviews the role of immune cells in OTR and organ transplant tolerance (OTT), including the novel cell therapies that are currently under clinical trials for transplant recipients.

Figures

Fig. 1

References

[ 1 ] Shayan H. Organ transplantation: from myth to reality. J Invest Surg 2001;14:135–8. link1

[ 2 ] Deschamps JY, Roux FA, Sai P, Gouin E. History of xenotransplantation. Xenotransplantation 2005;12(2):91–109. link1

[ 3 ] Hatzinger M, Stastny M, Grützmacher P, Sohn M. Die Geschichte der Nierentransplantation. Urologe A 2016;55(10):1353–9. German.

[ 4 ] Moore FD, Smith LL, Burnap TK, Dallenbach FD, Dammin GJ, Gruber UF, et al. One-stage homotransplantation of the liver following total hepatectomy in dogs. Transplant Bull 1959;6(1):103–7. link1

[ 5 ] Meirelles Júnior RF, Salvalaggio P, Rezende MB, Evangelista AS, Guardia BD, Matielo CEL, et al. Liver transplantation: history, outcomes and perspectives. Einstein 2015;13(1):149–52. link1

[ 6 ] Margreiter R. History of lung and heart-lung transplantation, with special emphasis on German-speaking countries. Transplant Proc 2016;48 (8):2779–81. link1

[ 7 ] Markus JW, Frank R, Andreas JF, Dominique B, Marko IT, Francesco M. Fiftieth anniversary of the first heart transplantation in Switzerland in the context of the worldwide history of heart transplantation. Swiss Med Wkly 2020;150: w20192. link1

[ 8 ] Stehlik J, Mehra MR, Sweet SC, Kirklin JK, Cypel M, Kirk R, et al. The international society for heart and lung transplantation registries in the era of big data with global reach. J Heart Lung Transplant 2015;34(10):1225–32. link1

[ 9 ] Martin-Gandul C, Mueller NJ, Pascual M, Manuel O. The impact of infection on chronic allograft dysfunction and allograft survival after solid organ transplantation. Am J Transplant 2015;15(12):3024–40. link1

[10] Cozzi E, Colpo A, de Silvestro G. The mechanisms of rejection in solid organ transplantation. Transfus Apheresis Sci 2017;56(4):498–505. link1

[11] Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, et al. Donor SIRPa polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol 2017;12(2):eaam6202. link1

[12] Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164(12):6166–73. link1

[13] Azad TD, Donato M, Heylen L, Liu AB, Shen-Orr SS, Sweeney TE, et al. Inflammatory macrophage–associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 2018;3(2):e95659. link1

[14] Liu X, Cao H, Li J, Wang B, Zhang P, Zhang XD, et al. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemiareperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ 2017;24(4):683–93. link1

[15] Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 2015;4(2):20–7. link1

[16] Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol 2009;130(1):41–50. link1

[17] Koenig A, Thaunat O. Lymphoid neogenesis and tertiary lymphoid organs in transplanted organs. Front Immunol 2016;7:646. link1

[18] Bergler T, Jung B, Bourier F, Kühne L, Banas MC, Rümmele P, et al. Infiltration of macrophages correlates with severity of allograft rejection and outcome in human kidney transplantation. PLoS ONE 2016;11(6):e0156900. link1

[19] Toki D, Zhang W, Hor KLM, Liuwantara D, Alexander SI, Yi Z, et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation. Am J Transplant 2014;14(9):2126–36. link1

[20] Wu C, Zhao Y, Xiao X, Fan Y, Kloc M, Liu W, et al. Graft-infiltrating macrophages adopt an M2 phenotype and are inhibited by purinergic receptor P2X7 antagonist in chronic rejection. Am J Transplant 2016;16 (9):2563–73. link1

[21] Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN+ macrophages control the induction of transplantation tolerance. Immunity 2015;42(6):1143–58. link1

[22] Riquelme P, Tomiuk S, Kammler A, Fändrich F, Schlitt HJ, Geissler EK, et al. IFN-c-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther 2013;21 (2):409–22. link1

[23] Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281(5380):1191–3. link1

[24] Riquelme P, Amodio G, Macedo C, Moreau A, Obermajer N, Brochhausen C, et al. DHRS9 is a stable marker of human regulatory macrophages. Transplantation 2017;101(11):2731–8. link1

[25] Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018;9(1):2858. link1

[26] Seillet C, Belz GT, Huntington ND. Development, homeostasis, and heterogeneity of NK cells and ILC1. Curr Top Microbiol Immunol 2015;395:37–61. link1

[27] Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019;287(1):202–25. link1

[28] Caligiuri MA. Human natural killer cells. Blood 2008;112(3):461–9. link1

[29] Björkström NK, Ljunggren HG, Michaelsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2016;16 (5):310–20. link1

[30] Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killercell subsets. Trends Immunol 2001;22(11):633–40. link1

[31] Heidecke CD, Araujo JL, Kupiec-Weglinski JW, Abbud-Filho M, Araneda D, Stadler J, et al. Lack of evidence for an active role for natural killer cells in acute rejection of organ allografts. Transplantation 1985;40(4):441–4. link1

[32] Kitchens WH, Uehara S, Chase CM, Colvin RB, Russell PS, Madsen JC. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation 2006;81(6):811–7. link1

[33] Mbiribindi B, Harden JT, Pena JK, Krams SM. Natural killer cells as modulators of alloimmune responses. Curr Opin Organ Transplant 2019;24(1):37–41. link1

[34] Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol 2017;8:930. link1

[35] Kroemer A, Xiao X, Degauque N, Edtinger K, Wei H, Demirci G, et al. The innate NK cells, allograft rejection, and a key role for IL-15. J Immunol 2008;180(12):7818–26. link1

[36] Hidalgo LG, Sellares J, Sis B, Mengel M, Chang J, Halloran PF. Interpreting NK cell transcripts versus T cell transcripts in renal transplant biopsies. Am J Transplant 2012;12(5):1180–91. link1

[37] dos Santos DC, Campos EF, Saraiva Camara NO, David DS, Malheiros DM. Compartment-specific expression of natural killer cell markers in renal transplantation: immune profile in acute rejection. Transpl Int 2016;29 (4):443–52. link1

[38] Solez K, Racusen LC. The Banff classification revisited. Kidney Int 2013;83 (2):201–6. link1

[39] Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-c for TH1 priming. Nat Immunol 2004;5:1260–5. link1

[40] Hancock WW, Gao W, Faia KL, Csizmadia V. Chemokines and their receptors in allograft rejection. Curr Opin Immunol 2000;12:511–6. link1

[41] Kildey K, Francis RS, Hultin S, Harfield M, Giuliani K, Law BMP, et al. Specialized roles of human natural killer cell subsets in kidney transplant rejection. Front Immunol 2019;10:1877. link1

[42] Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5(2):112–24. link1

[43] Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-c for TH1 priming. Nat Immunol 2004;5(12):1260–5. link1

[44] Hadad U, Martinez O, Krams SM. NK cells after transplantation: friend or foe. Immunol Res 2014;58(2–3):259–67. link1

[45] Parkes MD, Halloran PF, Hidalgo LG. Evidence for CD16a-mediated NK cell stimulation in antibody-mediated kidney transplant rejection. Transplantation 2017;101(4):e102–11. link1

[46] Olson JA, Leveson-Gower DB, Gill S, Baker J, Beilhack A, Negrin RS. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 2010;115(21):4293–301. link1

[47] Harmon C, Sanchez-Fueyo A, O’Farrelly C, Houlihan DD. Natural killer cells and liver transplantation: orchestrators of rejection or tolerance? Am J Transplant 2016;16(3):751–7. link1

[48] Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 2006;203(8):1851–8. link1

[49] Deniz G, Erten G, Kucuksezer UC, Kocacik D, Karagiannidis C, Aktas E, et al. Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 2008;180(2):850–7. link1

[50] Trojan K, Zhu L, Aly M, Weimer R, Bulut N, Morath C, et al. Association of peripheral NK cell counts with Helios+ IFN-c– Tregs in patients with good long-term renal allograft function. Clin Exp Immunol 2017;188(3):467–79. link1

[51] Zhang J, Dunk C, Croy AB, Lye SJ. To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res 2016;363 (1):249–65. link1

[52] Yu J, Ren X, Yan F, Li H, Cao S, Chen Y, et al. Alloreactive natural killer cells promote haploidentical hematopoietic stem cell transplantation by expansion of recipient-derived CD4+ CD25+ regulatory T cells. Transpl Int 2011;24(2):201–12. link1

[53] Breton G, Zheng S, Valieris R, Tojal da Silva I, Satija R, Nussenzweig MC. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J Exp Med 2016;213 (13):2861–70. link1

[54] Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 2016;126(8):2805–20. link1

[55] Herrera OB, Golshayan D, Tibbott R, Ochoa FS, James MJ, Marelli-Berg FM, et al. A novel pathway of alloantigen presentation by dendritic cells. J Immunol 2004;173(8):4828–37. link1

[56] Rosen SJ, Harris PE, Hardy MA. State of the art: role of the dendritic cell in induction of allograft tolerance. Transplantation 2018;102(10):1603–13. link1

[57] Moreau A, Alliot-Licht B, Cuturi MC, Blancho G. Tolerogenic dendritic cell therapy in organ transplantation. Transpl Int 2017;30(8):754–64. link1

[58] Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl TE, et al. Costimulatory moleculedeficient dendritic cell progenitors (MHC class II+ , CD80dim, CD86– ) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 1996;62(5):659–65. link1

[59] Roelen DL, Schuurhuis DH, van den Boogaardt DEM, Koekkoek K, van Miert PPMC, van Sˆchip JJ, et al. Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells. Transplantation 2003;76(11):1608–15. link1

[60] Sato K, Yamashita N, Yamashita N, Baba M, Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003;18(3):367–79. link1

[61] Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010;234(1):142–62. link1

[62] Tokita D, Mazariegos GV, Zahorchak AF, Chien N, Abe M, Raimondi G, et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 2008;85(3):369–77. link1

[63] Ferrari RS, Andrade CF. Oxidative stress and lung ischemia-reperfusion injury. Oxid Med Cell Longev 2015;2015:590987. link1

[64] Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol 2001;280(6): H2649–57. link1

[65] Kimura K, Shirabe K, Yoshizumi T, Takeishi K, Itoh S, Harimoto N, et al. Ischemia-reperfusion injury in fatty liver is mediated by activated NADPH oxidase 2 in rats. Transplantation 2016;100(4):791–800. link1

[66] Hardison MT, Galin FS, Calderon CE, Djekic UV, Parker SB, Wille KM, et al. The presence of a matrix-derived neutrophil chemoattractant in bronchiolitis obliterans syndrome after lung transplantation. J Immunol 2009;182 (7):4423–31. link1

[67] Liu FC, Chuang YH, Tsai YF, Yu HP. Role of neutrophil extracellular traps following injury. Shock 2014;41(6):491–8. link1

[68] Sayah DM, Mallavia B, Liu F, Ortiz-Muñoz G, Caudrillier A, DerHovanessian A, et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2015;191 (4):455–63. link1

[69] Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Damageassociated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 2015;62 (2):600–14. link1

[70] Kish DD, Gorbachev AV, Parameswaran N, Gupta N, Fairchild RL. Neutrophil expression of Fas ligand and perforin directs effector CD8 T cell infiltration into antigen-challenged skin. J Immunol 2012;189(5):2191–202. link1

[71] Jones ND, Brook MO, Carvalho-Gaspar M, Luo S, Wood KJ. Regulatory T cells can prevent memory CD8+ T-cell-mediated rejection following polymorphonuclear cell depletion. Eur J Immunol 2010;40(11):3107–16. link1

[72] Kreisel D, Sugimoto S, Zhu J, Nava R, Li W, Okazaki M, et al. Emergency granulopoiesis promotes neutrophil-dendritic cell encounters that prevent mouse lung allograft acceptance. Blood 2011;118(23):6172–82. link1

[73] Saini D, Angaswamy N, Tiriveedhi V, Fukami N, Ramachandran S, Hachem R, et al. Synergistic effect of antibodies to human leukocyte antigens and defensins in pathogenesis of bronchiolitis obliterans syndrome after human lung transplantation. J Heart Lung Transplant 2010;29(12):1330–6. link1

[74] Abadja F, Sarraj B, Ansari MJ. Significance of T helper 17 immunity in transplantation. Curr Opin Organ Transplant 2012;17(1):8–14. link1

[75] Ruttens D, Wauters E, Kicinski M, Verleden SE, Vandermeulen E, Vos R, et al. Genetic variation in interleukin-17 receptor A is functionally associated with chronic rejection after lung transplantation. J Heart Lung Transplant 2013;32 (12):1233–40. link1

[76] Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 2012;122(1):327–36. link1

[77] Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 2013;498(7454):371–5. link1

[78] Christoffersson G, Vagesjo E, Vandooren J, Lidén M, Massena S, Reinert RB, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012;120 (23):4653–62. link1

[79] Massena S, Christoffersson G, Vagesjo E, Seignez C, Gustafsson K, Binet F, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 2015;126(17):2016–26. link1

[80] Elieh Ali Komi D, Bjermer L. Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 2019;56(2):234–47. link1

[81] Elieh Ali Komi D, Ribatti D. Mast cell-mediated mechanistic pathways in organ transplantation. Eur J Pharmacol 2019;857:172458.

[82] Chang JC, Leung J, Tang T, Holzknecht ZE, Hartwig MG, Duane Davis R, et al. Cromolyn ameliorates acute and chronic injury in a rat lung transplant model. J Heart Lung Transplant 2014;33(7):749–57. link1

[83] Jungraithmayr W. The putative role of mast cells in lung transplantation. Am J Transplant 2015;15(3):594–600. link1

[84] Elieh Ali Komi D, Grauwet K. Role of mast cells in regulation of T cell responses in experimental and clinical settings. Clin Rev Allergy Immunol 2018;54(3):432–45. link1

[85] de Vries VC, Wasiuk A, Bennett KA, Benson MJ, Elgueta R, Waldschmidt TJ, et al. Mast cell degranulation breaks peripheral tolerance. Am J Transplant 2009;9(10):2270–80. link1

[86] de Vries VC, Pino-Lagos K, Elgueta R, Noelle RJ. The enigmatic role of mast cells in dominant tolerance. Curr Opin Organ Transplant 2009;14(4):332–7. link1

[87] Goldman M, Moine AL, Braun M, Flamand V, Abramowicz D. A role for eosinophils in transplant rejection. Trends Immunol 2001;22(5):247–51. link1

[88] Rodríguez Castellanos FE, Quintana FD, Abraham VS, Urrea EM, Domínguez Quintana F, Soto Abraham V, et al. Classification of acute rejection episodes in kidney transplantation: a proposal based on factor analysis. Iran J Kidney Dis 2018;12(2):123–31. link1

[89] McEachern W, Godown J, Dodd DA, Dipchand AI, Conway JL, Wilson GJ, et al. Sudden death in a pediatric heart transplant recipient with peripheral eosinophilia and eosinophilic myocardial infiltrates. Pediatr Transplant 2017;21(5):e12937. link1

[90] Arbon KS, Albers E, Kemna M, Law S, Law Y. Eosinophil count, allergies, and rejection in pediatric heart transplant recipients. J Heart Lung Transplant 2015;34(8):1103–11. link1

[91] Weissler JC. Eosinophilic lung disease. Am J Med Sci 2017;354(4):339–49. link1

[92] Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Dubbeldam A, De Wever W, et al. Predictors of survival in restrictive chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 2016;35(9):1078–84. link1

[93] Goh YP, Henderson NC, Heredia JE, Red Eagle A, Odegaard JI, Lehwald N, et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci USA 2013;110(24):9914–9. link1

[94] Rodríguez-Perálvarez M, De Luca L, Crespo G, Rubin Á, Marín S, Benlloch S, et al. An objective definition for clinical suspicion of T-cell-mediated rejection after liver transplantation. Clin Transplant 2017;31(7):e13005. link1

[95] Kumar S, Mohapatra N, Borle DP, Choudhury A, Sarin S, Gupta E. Non invasive diagnosis of acute cellular rejection after liver transplantation—current opinion. Transpl Immunol 2018;47:1–9. link1

[96] Datta Gupta S, Hudson M, Burroughs AK, Morris R, Rolles K, Amlot P, et al. Grading of cellular rejection after orthotopic liver transplantation. Hepatology 1995;21(1):46–57. link1

[97] Onyema OO, Guo Y, Mahgoub B, Wang Q, Manafi A, Mei Z, et al. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 2019;4(11):e128241. link1

[98] Onyema OO, Guo Y, Wang Q, Stoler MH, Lau C, Li K, et al. Eosinophils promote inducible NOS-mediated lung allograft acceptance. JCI Insight 2017;2(24): e96455. link1

[99] Ochando J, Conde P, Utrero-Rico A, Paz-Artal E. Tolerogenic role of myeloid suppressor cells in organ transplantation. Front Immunol 2019;10:374. link1

[100] Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016;7(1):12150. link1

[101] Zhang W, Li J, Qi G, Tu G, Yang C, Xu M. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018;16(1):19. link1

[102] Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 2008;180 (12):7898–906. link1

[103] Luan Y, Mosheir E, Menon MC, Wilson D, Woytovich C, Ochando J, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion. Am J Transplant 2013;13 (12):3123–31. link1

[104] Wei C, Wang Y, Ma L, Wang X, Chi H, Zhang S, et al. Rapamycin nano-micelle ophthalmic solution reduces corneal allograft rejection by potentiating myeloid-derived suppressor cells’ function. Front Immunol 2018;9:2283. link1

[105] Gong W, Ge F, Liu D, Wu Y, Liu F, Kim BS, et al. Role of myeloid-derived suppressor cells in mouse pre-sensitized cardiac transplant model. Clin Immunol 2014;153(1):8–16. link1

[106] Lee HJ, Park SY, Jeong HJ, Kim HJ, Kim MK, Oh JY. Glucocorticoids induce corneal allograft tolerance through expansion of monocytic myeloid-derived suppressor cells. Am J Transplant 2018;18(12):3029–37. link1

[107] Qin J, Arakawa Y, Morita M, Fung JJ, Qian S, Lu L. C-C chemokine receptor type 2-dependent migration of myeloid-derived suppressor cells in protection of islet transplants. Transplantation 2017;101(8):1793–800. link1

[108] Hock BD, Mackenzie KA, Cross NB, Taylor KG, Currie MJ, Robinson BA, et al. Renal transplant recipients have elevated frequencies of circulating myeloidderived suppressor cells. Nephrol Dial Transplant 2012;27 (1):402–10. link1

[109] Meng F, Chen S, Guo X, Chen Z, Huang X, Lai Y, et al. Clinical significance of myeloid-derived suppressor cells in human renal transplantation with acute T cell-mediated rejection. Inflammation 2014;37(5):1799–805. link1

[110] Okano S, Abu-Elmagd K, Kish DD, Keslar K, Baldwin III WM, Fairchild RL, et al. Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients. Am J Transplant 2018;18(10):2544–58. link1

[111] Anusara D, Supinya I, Paramita C, Hung DN, David B, Chen L, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood 2019;133(3):266–79. link1

[112] Geoff YZ, Min H, Debbie W, Yuan MW, John FK, Stephen IA. Indirectly activated treg allow dominant tolerance to murine skin-grafts across an MHC Class I mismatch after a single donor-specific transfusion. Transplantation 2020;104(7):1385–95. link1

[113] Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol 2019;10:43. link1

[114] Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation. Transpl Int 2017;30(8):776–84. link1

[115] Romano M, Tung SL, Smyth LA, Lombardi G. Treg therapy in transplantation: a general overview. Transpl Int 2017;30(8):745–53. link1

[116] Tomasz M, Wei W, Joel C, Hongjuan Z, Weimin W, Shuang W, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1- blockade resistance in tumor. Nat Immunol 2017;18(12):1332–41. link1

[117] Khashayar E, Tho-Alfakar A, Pamela T, Réjean L, Marie H, Nathalie AJ, et al. Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun 2019;10(1):4712. link1

[118] Bézie S, Anegon I, Guillonneau C. Advances on CD8+ Treg cells and their potential in transplantation. Transplantation 2018;102(9):1467–78. link1

[119] Trzonkowski P, Zilvetti M, Chapman S, Wie˛ckiewicz J, Sutherland A, Friend P, et al. Homeostatic repopulation by CD28CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant 2008;8(2):338–47. link1

[120] Cai J, Lee J, Jankowska-Gan E, Derks R, Pool J, Mutis T, et al. Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J Exp Med 2004;199(7):1017–23. link1

[121] Cong L, Wang SF, Zhao ZL, Yang RY. Donor-antigen inoculation in the testis promotes skin allograft acceptance induced by conventional costimulatory blockade via induction of CD8+ CD122+ and CD4+ CD25+ regulatory T cells. Transplantation 2016;100(4):763–71. link1

[122] Jarvis LB, Goodall JC, Gaston JS. Human leukocyte antigen class I-restricted immunosuppression by human CD8+ regulatory T cells requires CTLA-4- mediated interaction with dendritic cells. Hum Immunol 2008;69 (11):687–95. link1

[123] Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, et al. Molecular and cellular characterization of human CD8 T suppressor cells. Front Immunol 2016;7:549. link1

[124] Bézie S, Meistermann D, Boucault L, Kilens S, Zoppi J, Autrusseau E, et al. Ex vivo expanded human non-cytotoxic CD8+ CD45RClow/– Tregs efficiently delay skin graft rejection and GVHD in humanized mice. Front Immunol 2018;8:2014. link1

[125] Rifa’i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K, et al. CD8+ CD122+ regulatory T cells recognize activated T cells via conventional MHC class I– abTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 2008;20(7):937–47. link1

[126] Dai H, Wan N, Zhang S, Moore Y, Wan F, Dai Z. Cutting edge: programmed death-1 defines CD8+ CD122+ T cells as regulatory versus memory T cells. J Immunol 2010;185(2):803–7. link1

[127] Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 2018;18(3):153–67. link1

[128] Guillonneau C, Bezie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci 2017;74(14):2569–86. link1

[129] Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, et al. IL-34 is a Tregspecific cytokine and mediates transplant tolerance. J Clin Invest 2015;125 (10):3952–64. link1

[130] Daniel V, Wang H, Sadeghi M, Opelz G. Interferon-c producing regulatory T cells as a diagnostic and therapeutic tool in organ transplantation. Int Rev Immunol 2014;33(3):195–211. link1

[131] Myers L, Croft M, Kwon BS, Mittler RS, Vella AT. Peptide-specific CD8 T regulatory cells use IFN-c to elaborate TGF-b-based suppression. J Immunol 2005;174(12):7625–32. link1

[132] Bézie S, Picarda E, Tesson L, Renaudin K, Durand J, Ménoret S, et al. Fibrinogen-like protein 2/fibroleukin induces long-term allograft survival in a rat model through regulatory B cells. PLoS ONE 2015;10(3):e0119686. link1

[133] Liu H, Shalev I, Manuel J, He W, Leung E, Crookshank J, et al. The FGL2– FccRIIB pathway: a novel mechanism leading to immunosuppression. Eur J Immunol 2008;38(11):3114–26. link1

[134] Liu H, Wang Y, Zeng Q, Zeng YQ, Liang CL, Qiu F, et al. Suppression of allograft rejection by CD8+ CD122+ PD-1+ Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget 2017;8(15):24187–95. link1

[135] Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, et al. Human and mouse CD8+ CD25+ FOXP3+ egulatory T cells at steady state and during interleukin-2 therapy. Front Immunol 2015;6:171. link1

[136] Picarda E, Bézie S, Venturi V, Echasserieau K, Mérieau E, Delhumeau A, et al. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection. J Clin Invest 2014;124(6):2497–512. link1

[137] Long X, Cheng Q, Liang H, Zhao J, Wang J, Wang W, et al. Memory CD4+ T cells are suppressed by CD8+ regulatory T cells in vitro and in vivo. Am J Transl Res 2017;9(1):63–78. link1

[138] Hill M, Thebault P, Segovia M, Louvet C, Bériou G, Tilly G, et al. Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and epstein-barr virus induced gene 3. Am J Transplant 2011;11(10):2036–45. link1

[139] Ma Y, He KM, Garcia B, Min W, Jevnikar A, Zhang ZX. Adoptive transfer of double negative T regulatory cells induces B-cell death in vivo and alters rejection pattern of rat-to-mouse heart transplantation. Xenotransplantation 2008;15(1):56–63. link1

[140] Ford McIntyre MS, Young KJ, Gao J, Joe B, Zhang L. Cutting edge: in vivo trogocytosis as a mechanism of double negative regulatory T cell-mediated antigen-specific suppression. J Immunol 2008;181(4):2271–5. link1

[141] Zhang ZX, Lian D, Huang X, Wang S, Sun H, Liu W, et al. Adoptive transfer of DNT cells induces long-term cardiac allograft survival and augments recipient CD4+ Foxp3+ Treg cell accumulation. Transpl Immunol 2011;24 (2):119–26. link1

[142] Ligocki AJ, Niederkorn JY. Advances on non-CD4+ Foxp3+ T regulatory cells: CD8+ , type 1, and double negative T regulatory cells in organ transplantation. Transplantation 2015;99(8):1553–9. link1

[143] Fahrner R, Dondorf F, Ardelt M, Settmacher U, Rauchfuss F. Role of NK, NKT cells and macrophages in liver transplantation. World J Gastroenterol 2016;22(27):6135–44. link1

[144] Jukes JP, Wood KJ, Jones ND. Natural killer T cells: a bridge to tolerance or a pathway to rejection? Transplantation 2007;84(6):679–81. link1

[145] Ikehara Y, Yasunami Y, Kodama S, Maki T, Nakano M, Nakayama T, et al. CD4+ Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Invest 2000;105(12):1761–7. link1

[146] Leveson-Gower DB, Olson JA, Sega EI, Luong RH, Baker J, Zeiser R, et al. Low doses of natural killer T cellsprovide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 2011;117(11):3220–9. link1

[147] Du J, Paz K, Thangavelu G, Schneidawind D, Baker J, Flynn R, et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood 2017;129(23):3121–5. link1

[148] Khairallah C, Déchanet-Merville J, Capone M. cd T cell-mediated immunity to cytomegalovirus infection. Front Immunol 2017;8:105. link1

[149] Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdörfer L, et al. Human cd T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 2017;18(4):393–401. link1

[150] Lo Presti E, Dieli F, Meraviglia S. Tumor-infiltrating cd T lymphocytes: pathogenic role, clinical significance and differential programming in the tumor microenvironment. Front Immunol 2014;5:607. link1

[151] Pang D, Neves J, Sumaria N, Pennington D. Understanding the complexity of cd T-cell subsets in mouse and human. Immunology 2012;136(3):283–90. link1

[152] McCallion O, Hester J, Issa F. Deciphering the contribution of cd T cells to outcomes in transplantation. Transplantation 2018;102(12):1983–93. link1

[153] Hochegger K, Schätz T, Eller P, Tagwerker A, Heininger D, Mayer G, et al. Role of a/b and c/d T cells in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2007;293(3):F741–7. link1

[154] Puig-Pey I, Bohne F, Benitez C, López M, Martínez-Llordella M, Oppenheimer F, et al. Characterization of cd T cell subsets in organ transplantation. Transpl Int 2010;23(10):1045–55. link1

[155] Bachelet T, Couzi L, Pitard V, Sicard X, Rigothier C, Lepreux S, et al. Cytomegalovirus-responsive cd T cells: novel effector cells in antibodymediated kidney allograft microcirculation lesions. J Am Soc Nephrol 2014;25(11):2471–82. link1

[156] Wu Q, Gupta PK, Suzuki H, Wagner SR, Zhang C, Cummings OW, et al. CD4 T cells but not Th17 cells are required for mouse lung transplant obliterative bronchiolitis. Am J Transplant 2015;15(7):1793–804. link1

[157] Gupta PK, Wagner SR, Wu Q, Shilling RA. Th17 cells are not required for maintenance of IL-17A producing cd T cells in vivo. Immunol Cell Biol 2017;95(3):280–6. link1

[158] Zhu H, Li J, Wang S, Liu K, Wang L, Huang L. cd T cell receptor deficiency attenuated cardiac allograft vasculopathy and promoted regulatory T cell expansion. Scand J Immunol 2013;78(1):44–9. link1

[159] Xia Q, Duan L, Shi L, Zheng F, Gong F, Fang M. High-mobility group box 1 accelerates early acute allograft rejection via enhancing IL-17+ cd T-cell response. Transpl Int 2014;27(4):399–407. link1

[160] Martínez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 2007;7(2):309–19. link1

[161] Koshiba T, Li Y, Takemura M, Wu Y, Sakaguchi S, Minato N, et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation. Transpl Immunol 2007;17 (2):94–7. link1

[162] Yu X, Liu Z, Wang Y, Wang H, Zhang M, Sun Y, et al. Characteristics of Vd1+ and Vd2+ cd T cell subsets in acute liver allograft rejection. Transpl Immunol 2013;29(1–4):118–22. link1

[163] Gorczynski RM, Chen Z, Zeng H, Fu XM. Specificity for in vivo graft prolongation in cd T cell receptor+ hybridomas derived from mice given portal vein donor-specific preimmunization and skin allografts. J Immunol 1997;159(8):3698–706. link1

[164] Hu M, Wu J, Zhang GY, Wang YM, Watson D, Yi S, et al. Selective depletion of alloreactive T cells leads to long-term islet allograft survival across a major histocompatibility complex mismatch in diabetic mice. Cell Transplant 2013;22(10):1929–41. link1

[165] Gorczynski RM, Fu XM, Issekutz T, Cohen Z. Differential regulation of rejection of small intestinal and skin allografts in rats by injection of antibodies to ICAM-1 or the integrins a4, aL, or b2. Cell Immunol 1998;184 (1):74–82. link1

[166] Dijke EI, Platt JL, Blair P, Clatworthy MR, Patel JK, Kfoury AG, et al. B cells in transplantation. J Heart Lung Transplant 2016;35(6):704–10. link1

[167] Chu Z, Zou W, Xu Y, Sun Q, Zhao Y. The regulatory roles of B cell subsets in transplantation. Expert Rev Clin Immunol 2018;14(2):115–25. link1

[168] Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6- producing B cells. J Exp Med 2012;209(5):1001–10. link1

[169] Melo ME, Qian J, El-Amine M, Agarwal RK, Soukhareva N, Kang Y, et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002;168(9):4788–95. link1

[170] Hartung HP, Kieseier BC. Atacicept: targeting B cells in multiple sclerosis. Ther Adv Neurol Disord 2010;3(4):205–16. link1

[171] Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J Clin Invest 2011;121 (9):3645–56. link1

[172] Yeung MY, Ding Q, Brooks CR, Xiao S, Workman CJ, Vignali DAA, et al. TIM-1 signaling is required for maintenance and induction of regulatory B cells. Am J Transplant 2015;15(4):942–53. link1

[173] Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014;507(7492):366–70. link1

[174] Bobryshev YV, Sobenin IA, Orekhov AN, Chistiakov D. Novel antiinflammatory interleukin-35 as an emerging target for antiatherosclerotic therapy. Curr Pharm Des 2015;21(9):1147–51. link1

[175] Lee KM, Stott RT, Zhao G, SooHoo J, Xiong W, Lian MM, et al. TGF-b-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur J Immunol 2014;44(6):1728–36. link1

[176] Lundy SK, Boros DL. Fas ligand-expressing B-1a lymphocytes mediate CD4+ - T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL4) and IL-10. Infect Immun 2002;70(2):812–9. link1

[177] Kaltenmeier C, Gawanbacht A, Beyer T, Lindner S, Trzaska T, van der Merwe JA, et al. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the in vivo development of granzyme B-expressing regulatory B cells in HIV patients. J Immunol 2015;194(8):3768–77. link1

[178] Braza F, Chesne J, Castagnet S, Magnan A, Brouard S. Regulatory functions of B cells in allergic diseases. Allergy 2014;69(11):1454–63. link1

[179] Massart A, Pallier A, Pascual J, Viklicky O, Budde K, Spasovski G, et al. The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrol Dial Transplant 2016;31(6):1002–13. link1

[180] Chesneau M, Michel L, Degauque N, Brouard S. Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol 2013;4:497. link1

[181] Thaunat O. Pathophysiologic significance of B-cell clusters in chronically rejected grafts. Transplantation 2011;92(2):121–6. link1

[182] McMurchy AN, Bushell A, Levings MK, Wood KJ. Moving to tolerance: clinical application of T regulatory cells. Semin Immunol 2011;23 (4):304–13. link1

[183] Mathew JM, H Voss J, LeFever A, Konieczna I, Stratton C, He J, et al. A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants. Sci Rep 2018;8(1):7428. link1

[184] Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 2016;64(2):632–43. link1

[185] Chandran S, Tang Q, Sarwal M, Laszik ZG, Putnam AL, Lee K, et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am J Transplant 2017;17(11):2945–54. link1

[186] Geissler EK. The ONE Study compares cell therapy products in organ transplantation: introduction to a review series on suppressive monocytederived cells. Transplant Res 2012;1(1):11. link1

[187] Thomson AW, Zahorchak AF, Ezzelarab MB, Butterfield LH, Lakkis FG, Metes DM. Prospective clinical testing of regulatory dendritic cells in organ transplantation. Front Immunol 2016;7:15. link1

[188] Keller CA, Gonwa TA, Hodge DO, Hei DJ, Centanni JM, Zubair AC. Feasibility, safety, and tolerance of mesenchymal stem cell therapy for obstructive chronic lung allograft dysfunction. Stem Cells Transl Med 2018;7(2):161–7. link1

[189] Detry O, Vandermeulen M, Delbouille MH, Somja J, Bletard N, Briquet A, et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J Hepatol 2017;67(1):47–55. link1

[190] Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V, et al. Long-term clinical and immunological profile of kidney transplant patients given mesenchymal stromal cell immunotherapy. Front Immunol 2018;9:1359. link1

[191] Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA, et al. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int 2013;26(9):867–78. link1

[192] Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 2011;187(5):2072–8. link1

[193] Hombach AA, Kofler D, Rappl G, Abken H. Redirecting human CD4+ CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity. Gene Ther 2009;16(9):1088–96. link1

[194] Pierini A, Iliopoulou BP, Peiris H, Pérez-Cruz M, Baker J, Hsu K, et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2017;2(20):e92865. link1

[195] Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant 2017;17(4):931–43. link1

[196] Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am J Transplant 2017;17 (4):917–30. link1

[197] Yoon J, Schmidt A, Zhang AH, Königs C, Kim YC, Scott DW. DW FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 2017;129(2):238–45. link1

Related Research