Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 8, Issue 1 doi: 10.1016/j.eng.2021.04.028

Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells

a Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
c Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
d State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
e HiNa Battery Technology Co., Ltd., Liyang 213300, China
f Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China

# These authors contributed equally to this work.

Received: 2020-05-06 Revised: 2020-08-24 Accepted: 2020-09-14 Available online: 2021-08-24

Next Previous

Abstract

The low ionic conductivity of solid-state electrolytes (SSEs) and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries (SSSBs). Herein, sodium (Na) super ionic conductor (NASICON)-type SSEs with a nominal composition of Na3+2xZr2–xMgxSi2PO12 were synthesized using a facile two-step solid-state method, among which Na3.3Zr1.85Mg0.15Si2PO12 (x = 0.15, NZSP-Mg0.15) showed the highest ionic conductivity of 3.54 mS∙cm–1 at 25 °C. By means of a thorough investigation, it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON. Furthermore, due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs, we first adopted a high-voltage Na3(VOPO4)2F (NVOPF) cathode to verify its compatibility with the optimized NZSP-Mg0.15 SSE. By comparing the electrochemical performance of cells with different configurations (low-voltage cathode vs high-voltage cathode, liquid electrolytes vs SSEs), along with an X-ray photoelectron spectroscopy (XPS) evaluation of the after-cycled NZSP-Mg0.15, it was demonstrated that the NASICON SSEs are not stable enough under high voltage, suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes. Furthermore, by coating NZSP-Mg0.15 NASICON powder onto a polyethylene (PE) separator (PE@NASICON), a 2.42 A∙h non-aqueous Na-ion cell of carbon|PE@NASICON|NaNi2/9Cu1/9Fe1/3Mn1/3O2 was found to deliver an excellent cycling performance with an 88% capacity retention after 2000 cycles, thereby demonstrating the high reliability of a separator coated with NASICON-type SSEs.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Zhao S, Qin B, Chan KY, Li CY, Li F. Recent development of aprotic Na–O2 batteries. Batter Supercaps 2019;2(9):725–42. link1

[ 2 ] Lang J, Li J, Zhang F, Ding X, Zapien JA, Tang Y. Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type anode for enhanced rate and cycling performance. Batter Supercaps 2019;2(5):440–7. link1

[ 3 ] Zhao C, Lu Y, Chen L, Hu YS. Flexible Na batteries. InfoMat 2020;2(1):126–38. link1

[ 4 ] Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 2019;1(3):376–89. link1

[ 5 ] Hu YS, Lu Y. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett 2019;4(11):2689–90. link1

[ 6 ] Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, et al. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett 2020;5(4):1156–8. link1

[ 7 ] Eshetu GG, Elia GA, Armand M, Forsyth M, Komaba S, Rojo T, et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv Energy Mater 2020;10(20):2000093. link1

[ 8 ] Hu Pu, Wang X, Ma J, Zhang Z, He J, Wang X, et al. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016;26:382–91. link1

[ 9 ] Hu P, Wang X, Wang T, Chen L, Ma J, Kong Q, et al. Boron substituted Na3V2(P1xBxO4)3 cathode materials with enhanced performance for sodiumion batteries. Adv Sci 2016;3(12):1600112. Correction in: Adv Sci 2017;4(2).

[10] Wang Y, Song S, Xu C, Hu N, Molenda J, Lu Li. Development of solid-state electrolytes for sodium-ion battery—a short review. Nano Mater Sci 2019;1 (2):91–100. link1

[11] Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31(21):1808393. link1

[12] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett 2019;4(7):1650–7. link1

[13] Qiao L, Judez X, Rojo T, Armand M, Zhang H. Review—polymer electrolytes for sodium batteries. J Electrochem Soc 2020;167(7):070534. link1

[14] Zhou C, Bag S, Thangadurai V. Engineering materials for progressive all-solidstate Na batteries. ACS Energy Lett 2018;3(9):2181–98. link1

[15] Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, et al. Solid-state sodium batteries. Adv Energy Mater 2018;8(17):1703012.

[16] Lu Y, Li L, Zhang Q, Niu Z, Chen J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2018;2(9):1747–70. link1

[17] Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 2018;52:279–91. link1

[18] Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4 (6):831–47. link1

[19] Goodenough JB, Hong HYP, Kafalas JA. Fast Na+ -ion transport in skeleton structures. Mater Res Bull 1976;11(2):203–20. link1

[20] Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3xO12. Mater Res Bull 1976;11(2):173–82. link1

[21] Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci 2018;11(8):1945–76. link1

[22] Jalalian-Khakshour A, Phillips CO, Jackson L, Dunlop TO, Margadonna S, Deganello D. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. J Mater Sci 2020;55(6):2291–302. link1

[23] Shao Y, Zhong G, Lu Y, Liu L, Zhao C, Zhang Q, et al. A novel NASICON-based glass–ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater 2019;23:514–21. link1

[24] Lan T, Tsai CL, Tietz F, Wei XK, Heggen M, Dunin-Borkowski RE, et al. Roomtemperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials. Nano Energy 2019;65:104040. link1

[25] Lee JS, Chang CM, Lee YIL, Lee JH, Hong SH. Spark plasma sintering (SPS) of NASICON ceramics. J Am Ceram Soc 2004;87(2):305–7.

[26] Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv Energy Mater 2017;7(4):1601196. link1

[27] Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc 2018;101(3):1255–65. link1

[28] Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met 2018;37(6):480–7. link1

[29] Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng YS, Ong SP, et al. Divalentdoped Na3Zr2Si2PO12 natrium superionic conductor: improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J Power Sources 2017;347:229–37. link1

[30] Hu YS. Batteries: getting solid. Nat Energy 2016;1(4):16042. link1

[31] Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep 2016;6(1):32330. link1

[32] Yu X, Manthiram A. Sodium–sulfur batteries with a polymer-coated NASICONtype sodium-ion solid electrolyte. Matter 2019;1(2):439–51. link1

[33] Zhou W, Li Y, Xin S, Goodenough JB. Rechargeable sodium all-solid-state battery. ACS Cent Sci 2017;3(1):52–7. link1

[34] Fu H, Yin Q, Huang Y, Sun H, Chen Y, Zhang R, et al. Reducing interfacial resistance by Na–SiO2 composite anode for NASICON-based solid-state sodium battery. ACS Mater Lett 2020;2(2):127–32. link1

[35] Lu Y, Alonso JA, Yi Q, Lu L, Wang ZL, Sun C. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv Energy Mater 2019;9(28):1901205. link1

[36] Matios E, Wang H, Wang C, Hu X, Lu X, Luo J, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability. ACS Appl Mater Interfaces 2019;11(5):5064–72. link1

[37] Miao X, Di H, Ge X, Zhao D, Wang P, Wang R, et al. AlF3-modified anodeelectrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater 2020;30:170–8. link1

[38] Uchida Y, Hasegawa G, Shima K, Inada M, Enomoto N, Akamatsu H, et al. Insights into sodium ion transfer at the Na/NASICON interface improved by uniaxial compression. ACS Appl Energy Mater 2019;2(4):2913–20. link1

[39] Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki JI. Fabrication and performances of all solid-state symmetric sodium battery based on NASICONrelated compounds. Electrochim Acta 2013;101:59–65. link1

[40] Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, et al. An allsolid state NASICON sodium battery operating at 200 C. J Power Sources 2014;247:975–80. link1

[41] Ruan Y, Guo F, Liu J, Song S, Jiang N, Cheng B. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceram Int 2019;45(2):1770–6. link1

[42] Gao H, Xue L, Xin S, Park K, Goodenough JB. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angew Chem Int Ed Engl 2017;56(20):5541–5. link1

[43] Gao H, Xin S, Xue L, Goodenough JB. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem 2018;4(4): 833–44. link1

[44] Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Electrochemical performance of all-solid-state sodium-ion model cells with crystalline NaxCoO2 thin-film cathodes. J Electrochem Soc 2019;166(3):A5328–32. link1

[45] Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. J Power Sources 2019;409:86–93. link1

[46] Zhan C, Wu T, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ Sci 2018;11(2):243–57. link1

[47] Zhang Q, Gu QF, Li Y, Fan HN, Luo WB, Liu HK, et al. Surface stabilization of O3- type layered oxide cathode to protect the anode of sodium ion batteries for superior lifespan. iScience 2019;19:244–54. link1

[48] Yan Z, Pan H, Wang J, Chen R, Luo F, Yu X, et al. Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator. Chin Phys B 2020;29(8):088201. link1

[49] Qi XG, Zhou Q, Tang K, Hu YS, inventors; HiNa Battery Technology Co., Ltd., assignee. [Ceramic separator and sodium ion secondary battery for sodium ion battery and its application]. Chinese Patent CN109244314A. 2019 Jan 18. Chinese.

[50] Qi Y, Zhao J, Yang C, Liu H, Hu Y. Comprehensive studies on the hydrothermal strategy for the synthesis of Na3(VO1xPO4)2F1+2x (0 x 1) and their Nastorage performance. Small Methods 2019;3(4):1800111. link1

[51] Zhang Q, Lu Y, Yu H, Yang G, Liu Q, Wang Z, et al. PEO-NaPF6 blended polymer electrolyte for solid state sodium battery. J Electrochem Soc 2020;167 (7):070523. link1

[52] Tsai CL, Hong HYP. Investigation of phases and stability of solid electrolytes in the NASICON system. Mater Res Bull 1983;18(11):1399–407. link1

[53] Takahashi T, Kuwabara K, Shibata M. Solid-state ionics—conductivities of Na+ ion conductors based on NASICON. Solid State Ion 1980;1(3–4):163–75.

[54] Vonalpen U, Bell M, Hofer H. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3xO12). Solid State Ion 1981;3-4:215–8. link1

[55] Fuentes RO, Figueiredo FM, Marques FMB, Franco JI. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors. J Eur Ceram Soc 2001;21(6):737–43. link1

[56] Fuentes R. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion 2001;140(1–2):173–9. link1

[57] Naqash S, Sebold D, Tietz F, Guillon O. Microstructure–conductivity relationship of Na3Zr2(SiO4)2(PO4) ceramics. J Am Ceram Soc 2019;102 (3):1057–70. link1

[58] Guin M, Tietz F, Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3xO12. Solid State Ion 2016;293:18–26. link1

[59] Deng Y, Eames C, Nguyen LHB, Pecher O, Griffith KJ, Courty M, et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON). Chem Mater 2018;30(8):2618–30.

[60] Ben Bechir M, Ben Rhaiem A. The sodium-ion battery: study of alternative current conduction mechanisms on the Na3PO4-based solid electrolyte. Physica E 2020;120:114032. link1

[61] Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater 1990;2(3):132–8.

[62] Kim JH, Oh TS, Lee MS, Park JG, Kim YH. Effects of Al2O3 addition on the sinterability and ionic conductivity of nasicon. J Mater Sci 1993;28(6): 1573–7. link1

[63] Wang S, Xu H, Li W, Dolocan A, Manthiram A. Interfacial chemistry in solidstate batteries: formation of interphase and its consequences. J Am Chem Soc 2018;140(1):250–7. link1

[64] Tang H, Deng Z, Lin Z, Wang Z, Chu IH, Chen C, et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with firstprinciples calculations. Chem Mater 2018;30(1):163–73. link1

[65] Lacivita V, Wang Y, Bo SH, Ceder G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J Mater Chem A Mater Energy Sustain 2019;7(14):8144–55. link1

Related Research