Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2021.09.015

Flow-Electrode Microbial Electrosynthesis for Increasing Production Rates and Lowering Energy Consumption

a Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
b CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
c State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
d Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China

Received: 2021-06-05 Revised: 2021-09-08 Accepted: 2021-09-14 Available online: 2021-12-15

Next Previous

Abstract

The development of microbial electrosynthesis (MES) for renewable electricity-driven bioutilization of CO2 has recently attracted considerable interest due to its ability to synthesize chemicals with the transition towards a circular carbon economy. However, the increase of acetate production and the decrease of energy consumption of MES using an advanced reactor design have received less attention. In this study, the total acetate production rate using novel flow-electrode MES reactors ((16 ± 1) g·m−2·d−1) was double that using reactors without powder activated carbon (PAC) amendment ((8 ± 3) g·m−2·d−1). The flow-electrode MES reactors had a Coulombic efficiency of 43.5% ± 3.1%, an energy consumption of (0.020 ± 0.005) kW·h·g−1, and an energy efficiency of 18.7% ± 1.3% during acetate production. The flow-electrode with PAC amendment could decrease the net water flux and charge transfer resistance, while had little impact on the cell voltage, rheological behavior, and acetate adsorption. In the flow-electrode MES reactors, the expression of genes involving in energy production and conversion were increased, and the increase of acetate production was found correlated with the increased abundance of Acetobacterium. The Wood–Ljungdahl pathway (WLP) and reductive citric acid cycle (rTCA) were found to be the complete pathways responsible for carbon fixation. The concentrations of acetate in the stacked flow-electrode MES reached 7.0 g·L−1. This study presents a new approach for the construction of scalable MES reactors with high-performance chemical generation and CO2 utilization.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Zhou L, Wang H, Zhang Z, Zhang J, Chen H, Bi X, et al. Novel perspective for urban water resource management: 5R generation. Front Environ Sci Eng 2021;15(1):16. link1

[ 2 ] Hu G, Chen C, Lu HT, Wu Y, Liu C, Tao L, et al. A review of technical advances, barriers, and solutions in the power to hydrogen (P2H) roadmap. Engineering 2020;6(12):1364‒80. link1

[ 3 ] Huang Z, Grim RG, Schaidle JA, Tao L. The economic outlook for converting CO2 and electrons to molecules. Energy Environ Sci 2021;14(7):3664‒78. link1

[ 4 ] Zhang Z, Pan SY, Li H, Cai J, Olabi AG, Anthony EJ, et al. Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 2020;125:109799. link1

[ 5 ] Grim RG, Huang Z, Guarnieri MT, Ferrell JR, Tao L, Schaidle JA. Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energy Environ Sci 2020;13 (2):472‒94. link1

[ 6 ] Greig C. Getting to net-zero emissions. Engineering 2020;6(12):1341‒2. link1

[ 7 ] Dessì P, Rovira-Alsina L, Sánchez C, Dinesh GK, Tong W, Chatterjee P, et al. Microbial electrosynthesis: towards sustainable biorefineries for production of green chemicals from CO2 emissions. Biotechnol Adv 2021;46:107675. link1

[ 8 ] Flexer V, Jourdin L. Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide. Acc Chem Res 2020;53(2):311‒21. link1

[ 9 ] Jiang Y, Liang Q, Chu N, Hao W, Zhang L, Zhan G, et al. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. Sci Total Environ 2020;741:140198. link1

[10] Kim Y, Lama S, Agrawal D, Kumar V, Park S. Acetate as a potential feedstock for the production of value-added chemicals: metabolism and applications. Biotechnol Adv 2021;49:107736. link1

[11] LaBelle EV, Marshall CW, May HD. Microbiome for the electrosynthesis of chemicals from carbon dioxide. Acc Chem Res 2020;53(1):62‒71. link1

[12] Chu N, Liang Q, Jiang Y, Zeng RJ. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 2020;150:111922. link1

[13] Chu N, Hao W, Wu Q, Liang Q, Jiang Y, Ren JZ, et al. Microbial electrosynthesis for producing medium chain fatty acids. Engineering 2022;16:141‒53. link1

[14] Zeng AP. New bioproduction systems for chemicals and fuels: needs and new development. Biotechnol Adv 2019;37(4):508‒18. link1

[15] Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. One-year operation of 1000- L modularized microbial fuel cell for municipal wastewater treatment. Water Res 2018;141:1‒8. link1

[16] Quejigo JR, Korth B, Kuchenbuch A, Harnisch F. Redox potential heterogeneity in fixed-bed electrodes leads to microbial stratification and inhomogeneous performance. ChemSusChem 2021;14(4):1155‒65. link1

[17] Jourdin L, Burdyny T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol 2021;39(4):359‒69. link1

[18] Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Res 2020;168:115186. link1

[19] Mourshed M, Niya SMR, Ojha R, Rosengarten G, Andrews J, Shabani B. Carbonbased slurry electrodes for energy storage and power supply systems. Energy Storage Mater 2021;40:461‒89. link1

[20] Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, et al. Flow-electrode capacitive deionization: a review and new perspectives. Water Res 2021;200:117222. link1

[21] Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A. Making quantitative sense of electromicrobial production. Nat Catal 2019;2(5):437‒47. link1

[22] Bajracharya S, Vanbroekhoven K, Buisman CJN, DPBTBStrik, Pant D. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discuss 2017;202:433‒49. link1

[23] Jiang Y, Chu N, Zeng RJ. Submersible probe type microbial electrochemical sensor for volatile fatty acids monitoring in the anaerobic digestion process. J Clean Prod 2019;232:1371‒8. link1

[24] Yang F, Ma J, Zhang X, Huang X, Liang P. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance. Water Res 2019;164:114904. link1

[25] Jiang Y, Chu Na, Zhang W, Ma J, Zhang F, Liang P, et al. Zinc: a promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Res 2019;159:87‒94. link1

[26] Izadi P, Fontmorin JM, Godain A, Yu EH, Head IM. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. NPJ Biofilms Microbiomes 2020;6(1):40. link1

[27] Chen H, Dong F, Minteer SD. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat Catal 2020;3(3):225‒44. link1

[28] Wang L, Yang C, Thangavel S, Guo Z, Chen C, Wang A, et al. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge. Front Environ Sci Eng 2021;15(4):56. link1

[29] Liang Q, Gao Y, Li Z, Cai J, Chu N, Hao W, et al. Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems. Front Environ Sci Eng 2022;16(4):42. link1

[30] Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res 2016;98:396‒403. link1

[31] Wang HF, Hu H, Yang HY, Zeng RJ. Characterization of anaerobic granular sludge using a rheological approach. Water Res 2016;106:116‒25. link1

[32] Ma J, Liang P, Sun X, Zhang H, Bian Y, Yang F, et al. Energy recovery from the flow-electrode capacitive deionization. J Power Sources 2019;421:50‒5. link1

[33] Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen Energy 2013;38(8):3497‒502. link1

[34] LaBelle EV, May HD. Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate. Front Microbiol 2017;8:756. link1

[35] Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. Water Res 2020;185:116270. link1

[36] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 2010;11(1):119. link1

[37] Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the nextgeneration sequencing data. Bioinformatics 2012;28(23):3150‒2. link1

[38] Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019;47(D1):D309‒14. link1

[39] Jiang Y, Chu N, Qian DK, Zeng RJ. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. Bioresour Technol 2020;295:122266. link1

[40] Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev 2020;120(23):12903‒93. link1

[41] Gildemyn S, Verbeeck K, Slabbinck R, Andersen SJ, Prévoteau A, Rabaey K. Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis. Environ Sci Technol Lett 2015;2(11):325‒8. link1

[42] Chu Na, Liang Q, Zhang W, Ge Z, Hao W, Jiang Y, et al. Waste C1 gases as alternatives to pure CO2 improved the microbial electrosynthesis of C4 and C6 carboxylates. ACS Sustain Chem Eng 2020;8(23):8773‒82. link1

[43] Mohanakrishna G, Vanbroekhoven K, Pant D. Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis. J CO2 Util 2016;15:57‒64. link1

[44] Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res 2019;149:42‒55. link1

[45] Patil SA, Arends JBA, Vanwonterghem I, van Meerbergen J, Guo K, Tyson GW, et al. Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ Sci Technol 2015;49(14):8833‒43. link1

[46] Xiang Y, Liu G, Zhang R, Lu Y, Luo H. High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane. Bioresour Technol 2017;233:227‒35. link1

[47] Roy M, Yadav R, Chiranjeevi P, Patil SA. Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis. Bioresour Technol 2021;320(Pt A):124289. link1

[48] Aryal N, Ammam F, Patil SA, Pant D. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 2017;19(24):5748‒60. link1

[49] Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ Sci Technol 2015;49(22):13566‒74. link1

[50] Jourdin L, Freguia S, Flexer V, Keller J. Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 2016;50(4):1982‒9. link1

[51] Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioeconomy. Bioresour Technol 2020;302:122863. link1

[52] Park SG, Rhee C, Shin SG, Shin J, Mohamed HO, Choi YJ, et al. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Environ Int 2019;131: 105006. link1

[53] Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR, Colwell RR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010;1(2):e00103‒10. link1

[54] Satinover SJ, Schell D, Borole AP. Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products. Appl Energy 2020;259:114126. link1

[55] Gildemyn S, Verbeeck K, Jansen R, Rabaey K. The type of ion selective membrane determines stability and production levels of microbial electrosynthesis. Bioresour Technol 2017;224:358‒64. link1

[56] Bian Y, Yang X, Liang P, Jiang Y, Zhang C, Huang X. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon. Water Res 2015;85:371‒6. link1

[57] Ma J, Ma J, Zhang C, Song J, Collins RN, Waite TD. Water recovery rate in shortcircuited closed-cycle operation of flow-electrode capacitive deionization (FCDI). Environ Sci Technol 2019;53(23):13859‒67. link1

[58] Reiner JE, Geiger K, Hackbarth M, Fink M, Lapp CJ, Jung T, et al. From an extremophilic community to an electroautotrophic production strain: identifying a novel Knallgas bacterium as cathodic biofilm biocatalyst. ISME J 2020;14(5):1125‒40. link1

[59] Jiang Y, Zeng RJ. Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—a review. Bioresour Technol 2018;269:503‒12. link1

[60] Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng 2018;6(7):8485‒93. link1

[61] Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 2019;17(5):307‒19. link1

[62] Hein S, Witt S, Simon J. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ Microbiol 2017;19(12):4913‒25. link1

[63] Jin S, Jeon Y, Jeon MS, Shin J, Song Y, Kang S, et al. Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proc Natl Acad Sci USA 2021;118(9): e2020552118. link1

[64] Müller V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol 2019;37(12):1344‒54. link1

[65] Liu Z, Wang K, Chen Y, Tan T, Nielsen J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 2020;3 (3):274‒88. link1

[66] Steffens L, Pettinato E, Steiner TM, Mall A, König S, Eisenreich W, et al. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 2021;592(7856):784‒8. link1

[67] Jourdin L, Winkelhorst M, Rawls B, Buisman CJN, DPBTBStrik. Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: steering with CO2 loading rate and hydraulic retention time. Bioresource Technol Rep 2019;7:100284. link1

[68] Yang S, Jeon S, Kim H, Choi J, Yeo J, Park H, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology. ACS Sustain Chem Eng 2016;4(8):4174‒80. link1

[69] Xu L, Mao Y, Zong Y, Wu D. Scale-up desalination: membrane-current collector assembly in flow-electrode capacitive deionization system. Water Res 2021;190:116782. link1

[70] Cho Y, Lee KS, Yang S, Choi J, Park H, Kim DK. A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flowelectrode capacitive deionization. Energy Environ Sci 2017;10(8):1746‒50. link1

[71] Rovira-Alsina L, Perona-Vico E, Bañeras L, Colprim J, Balaguer MD, Puig S. Thermophilic bio-electro CO2 recycling into organic compounds. Green Chem 2020;22(9):2947‒55. link1

[72] Yang HY, Hou NN, Wang YX, Liu J, He CS, Wang YR, et al. Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: impact of temperature. Sci Total Environ 2021;790:148128. link1

[73] Prévoteau A, Carvajal-Arroyo JM, Ganigué R, Rabaey K. Microbial electrosynthesis from CO2: forever a promise? Curr Opin Biotechnol 2020;62:48‒57. link1

[74] Ameen F, Alshehri WA, Nadhari SA. Effect of electroactive biofilm formation on acetic acid production in anaerobic sludge driven microbial electrosynthesis. ACS Sustain Chem Eng 2020;8(1):311‒8. link1

[75] Fontmorin JM, Izadi P, Li D, Lim SS, Farooq S, Bilal SS, et al. Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochim Acta 2021;372:137853. link1

[76] Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: the basic principles, electrode materials, and bioproducts. J CO2 Util 2021;51:101640. link1

[77] Gao T, Zhang H, Xu X, Teng J. Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading. Water Res 2021;190:116679. link1

Related Research