Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 26, Issue 7 doi: 10.1016/j.eng.2022.10.019

A Review of Recent Developments in “On-Chip” Embedded Cooling Technologies for Heterogeneous Integrated Applications

a Watson School of Engineering, Binghamton University, Binghamton, NY 13902, USA
b Office of the V.P. for Research, Binghamton University, Binghamton, NY 13902, USA

 

Received: 2021-09-20 Revised: 2022-07-07 Accepted: 2022-10-07 Available online: 2023-04-13

Next Previous

Abstract

The electronics packaging community strongly believes that Moore’s law will continue for another few years due to recent technological efforts to build heterogeneously integrated packages. Heterogeneous integration (HI) can be at the chip level (a single chip with multiple hotspots), in multi-chip modules, or in vertically stacked three-dimensional (3D) integrated circuits. Flux values have increased exponentially with a simultaneous reduction in chip size and a significant increase in performance, leading to increased heat dissipation. The electronics industry and the academic research community have examined various solutions to tackle skyrocketing thermal-management challenges. Embedded cooling eliminates most sequential conduction resistance from the chip to the ambient, unlike separable cold plates/heat sinks. Although embedding the cooling solution onto an electronic chip results in a high heat transfer potential, technological risks and complexity are still associated with the implementation of these technologies and with uncertainty regarding which technologies will be adopted. This manuscript discusses recent advances in embedded cooling, fluid selection considerations, and conventional, immersion, and additive manufacturing-based embedded cooling technologies.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] Merriam-Webster Dictionary. Definition of embed [Internet]. MerriamWebster; c2022 [cited 2020 Jun 24]. Available from: https://www.merriamwebster.com/dictionary/embed. link1

[ 2 ] Bar-Cohen A, Maurer JJ, Sivananthan A. Near-junction microfluidic cooling for wide bandgap devices. MRS Adv 2016;1(2):181–95. link1

[ 3 ] Bhopte S, Desu SB, Sammakia B. An integrated nano-structured heat spreader for high heat flux electronic systems. In: Proceedings of the 14th International Heat Transfer Conference; 2010 Aug 8–13; Washington, DC, USA. New York City: ASME; 2010. p. 629–35.

[ 4 ] Xu H, Pavlidis VF, De Micheli G. Analytical heat transfer model for thermal through-silicon vias. In: Proceedings of 2011 Design, Automation & Test in Europe (DATE); 2011 Mar 14–18; Grenoble, France. IEEE; 2011. p. 1–6.

[ 5 ] Kharangate CR, Jung KW, Jung S, Kong D, Schaadt J, Iyengar M, et al. Experimental investigation of embedded micropin-fins for single-phase heat transfer and pressure drop. J Electron Packag 2018;140(2):021001. link1

[ 6 ] Zhang HY, Pinjala D, Wong TN, Toh KC, Joshi YK. Single-phase liquid cooled microchannel heat sink for electronic packages. Appl Therm Eng 2005;25 (10):1472–87. link1

[ 7 ] Jung KW, Kharangate CR, Lee H, Palko J, Zhou F, Asheghi M, et al. Embedded cooling with 3D manifold for vehicle power electronics application: singlephase thermal-fluid performance. Int J Heat Mass Transf 2019;130:1108–19. link1

[ 8 ] Hanks DF, Lu Z, Narayanan S, Bagnall KR, Raj R, Xiao R, et al. Nanoporous evaporative device for advanced electronics thermal management. In: Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2014 May 27–30; Orlando, FL, USA. IEEE; 2014. p. 290–5.

[ 9 ] Birbarah P, Gebrael T, Foulkes T, Stillwell A, Moore A, Pilawa-Podgurski R, et al. Water immersion cooling of high power density electronics. Int J Heat Mass Transf 2020;147:118918. link1

[10] Cray SR Jr, inventor; Cray Inc., assignee. Immersion cooled high density electronic assembly. United States patent US4590538A. 1986 May 20.

[11] Stefanoski Z, inventor; Nvidia Corp., assignee. Embedded heat pipe in a hybrid cooling system. United States patent US7551442B2. 2009 Jun 23.

[12] Meyer G. Heat pipes & vapor chambers design guidelines. Report. Santa Clara: Semi-Therm; 2016.

[13] Conte AS, inventor; Sun Microsystems Inc., assignee. Cooling multi-chip modules using embedded heat pipes. United States patent US5355942A. 1994 Oct 18.

[14] Zhang H, Hobbis D, Nolas GS, LeBlanc S. Laser additive manufacturing of powdered bismuth telluride. J Mater Res 2018;33(23):4031–9. link1

[15] Carter MJ, El-Desouky A, Andre MA, Bardet P, LeBlanc S. Pulsed laser melting of bismuth telluride thermoelectric materials. J Manuf Process 2019;43(Part A):35–46. link1

[16] Fleischer AS. Thermal energy storage using phase change materials: fundamentals and applications. Cham: Springer; 2015. link1

[17] Schultz M, Yang F, Colgan E, Polastre R, Dang B, Tsang C, et al. Embedded twophase cooling of large 3D compatible chips with radial channels. In: Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels; 2015 Jul 6–9; San Francisco, CA, USA. New York City: ASME; 2015.

[18] Pop E, Sinha S, Goodson KE. Heat generation and transport in nanometerscale transistors. Proc IEEE 2006;94(8):1587–601. link1

[19] Venkatadri V, Sammakia B, Srihari K, Santos D. A review of recent advances in thermal management in three dimensional chip stacks in electronic systems. J Electron Packag 2011;133(4):041011. link1

[20] Hariharan G, Yip L, Chaware R, Singh I, Shen M, Ng K, et al. Reliability evaluations on 3DIC package beyond JEDEC. In: Proceedings of 2017 IEEE 67th Electronic Components and Technology Conference (ECTC); 2017 May 30–Jun 2; Orlando, FL, USA. IEEE; 2017. p. 1517–22.

[21] Bar-Cohen A, Maurer JJ, Altman DH. Embedded cooling for wide bandgap power amplifiers: a review. J Electron Packag 2019;141(4):040803. link1

[22] Rangarajan S, Schiffres S, Sammakia B. Scaling limits, challenges, opportunities in embedded cooling. In: Bar-Cohen A, editor. Encyclopedia of thermal packaging: thermal packaging tools. New Jersey: World Scientific Publishing Company; 2021. link1

[23] Azizi A, Schiffres SN. Laser metal additive manufacturing on graphite. In: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2018 Aug 13–15; Austin, TX, USA. Pittsburgh: TMS; 2018. p. 2315–24.

[24] Azizi A, Daeumer MA, Schiffres SN. Additive laser metal deposition onto silicon. Addit Manuf 2019;25:390–8. link1

[25] Radmard V, Hadad Y, Azizi A, Rangarajan S, Hoang CH, Arvin C, et al. Direct micro-pin jet impingement cooling for high heat flux applications. In: Proceedings of 2020 36th Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM); 2020 Mar 16–20; San Jose, CA, USA. IEEE; 2020. p. 1–9.

[26] Azizi A, Daeumer MA, Simmons JC, Sammakia BG, Murray BT, Schiffres SN. Additive laser metal deposition onto silicon for enhanced microelectronics cooling. In: Proceedings of 2019 IEEE 69th Electronic Components and Technology Conference (ECTC); 2019 May 28–31; Las Vegas, NV, USA. IEEE; 2019. p. 1970–6.

[27] Setiadi D, Liu H, inventors; Seagate Technology LLC, assignee. Chip having thermal vias and spreaders of CVD diamond. United States patent US20100140790A1. 2010 Jun 10.

[28] Ali MA, Peterson CW, McNab KM, inventors; DirecTV Group Inc., assignee. Electronic structure having an embedded pyrolytic graphite heat sink material. United States patent US6075701A. 2000 Jun 13.

[29] Dang B, Colgan E, Yang F, Schultz M, Liu Y, Chen Q, et al. Integration and packaging of embedded radial micro-channels for 3D chip cooling. In: Proceedings of 2016 IEEE 66th Electronic Components and Technology Conference (ECTC); 2016 May 31–Jun 3; Las Vegas, NV, USA. IEEE; 2016. p. 1271–7.

[30] Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett 1981;2(5):126–9. link1

[31] Back D, Drummond KP, Sinanis MD, Weibel JA, Garimella SV, Peroulis D, et al. Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling. IEEE Trans Compon Packag Manuf Technol 2019;9(7):1291–300. link1

[32] Mandel RK, Bae DG, Ohadi MM. Embedded two-phase cooling of high flux electronics via press-fit and bonded FEEDS coolers. J Electron Packag 2018;140(3):031003. link1

[33] Chu KH, Enright R, Wang EN. Structured surfaces for enhanced pool boiling heat transfer. Appl Phys Lett 2012;100(24):241603. link1

[34] Chu KH, Joung YS, Enright R, Buie CR, Wang EN. Hierarchically structured surfaces for boiling critical heat flux enhancement. Appl Phys Lett 2013;102 (15):151602. link1

[35] Bae DG, Mandel RK, Dessiatoun SV, Rajgopal S, Roberts SP, Mehregany M, et al. Embedded two-phase cooling of high heat flux electronics on silicon carbide (SiC) using thin-film evaporation and an enhanced delivery system (FEEDS) manifold-microchannel cooler. In: Proceedings of 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2017 May 30–Jun 2; Orlando, FL, USA; 2017.

[36] Chainer TJ, Schultz MD, Parida PR, Gaynes MA. Improving data center energy efficiency with advanced thermal management. IEEE Trans Compon Packag Manuf Technol 2017;7(8):1228–39. link1

[37] Sharma CS, Tiwari MK, Zimmermann S, Brunschwiler T, Schlottig G, Michel B, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl Energy 2015;138:414–22. link1

[38] Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions. Int J Heat Mass Transf 2018;126(Part A):1289–301. link1

[39] Shah RK, London AL. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. New York City: Academic Press; 1978. link1

[40] Song S, Au V, Moran KP. Constriction/spreading resistance model for electronics packaging. In: Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference; 1995 Mar 19–24; Maui, HI, USA. New York City: ASME; 1995. p. 199–206.

[41] Saylor JR, Bar-Cohen A, Lee TY, Simon TW, Tong W, Wu PS. Fluid selection and property effects in single- and two-phase immersion cooling (of electronic components). IEEE Trans Compon Hybrids Manuf Technol 1988;11 (4):557–65. link1

[42] Kottke PA, Yun TM, Green CE, Joshi YK, Fedorov AG. Two-phase convective cooling for ultrahigh power dissipation in microprocessors. J Heat Transfer 2016;138(1):011501. link1

[43] Xiang X, Liu W, Fan A. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics. Int J Therm Sci 2022;173:107375. link1

[44] Narayan V, Yao SC. Modeling and optimization of micro-channel heat sinks for the cooling of 3D stacked integrated circuits. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition; 2011 Nov 11–17; Denver, CO, USA. New York City: ASME; 2011. p. 999–1011.

[45] Lin L, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop. Int J Heat Mass Transf 2003;46(20):3737–46. link1

[46] Anacker W. Liquid cooling of integrated circuit chips. In: IBM technical disclosure bulletin. Armonk: IBM; 1978. p. 3742–3. link1

[47] Chen W, Bottoms B. Heterogeneous integration roadmap: driving force and enabling technology for systems of the future. In: Proceedings of 2019 Symposium on VLSI Technology; 2019 Jun 9–14; Kyoto, Japan. IEEE; 2019. p. T50–T51.

[48] May C, Mizerak J, Earley D, Malouin B. Thermal performance of modular microconvective heat sinks for multi-die processor assemblies. In: Proceedings of ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems; 2021 Oct 26–28; online. New York City: ASME; 2021.

[49] Chen RH, Chow LC, Navedo JE. Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Int J Heat Mass Transf 2002;45 (19):4033–43. link1

[50] Hanks DF, Lu Z, Sircar J, Kinefuchi I, Bagnall KR, Salamon TR, et al. High heat flux evaporation of low surface tension liquids from nanoporous membranes. ACS Appl Mater Interfaces 2020;12(6):7232–8. link1

[51] Li Y, Chen H, Xiao S, Alibakhshi MA, Lo CW, Lu MC, et al. Ultrafast diameterdependent water evaporation from nanopores. ACS Nano 2019;13 (3):3363–72. link1

[52] Kandlikar SG, Grande WJ. Evolution of microchannel flow passages— thermohydraulic performance and fabrication technology. Heat Transf Eng 2003;24(1):3–17. link1

[53] Rajan SK, Ramakrishnan B, Alissa H, Kim W, Belady C, Bakir MS. Integrated silicon microfluidic cooling of a high-power overclocked CPU for efficient thermal management. IEEE Access 2022;2022(10):59259–69. link1

[54] Bar-Cohen A, Asheghi M, Chainer TJ, Garimella SV, Goodson K, Gorle C, et al. The ICECool fundamentals effort on evaporative cooling of microelectronics. IEEE Trans Compon Packag Manuf Technol 2021;11(10):1546–64. link1

[55] Woodcock C, Ng’oma C, Sweet M, Wang Y, Peles Y, Plawsky J. Ultra-high heat flux dissipation with Piranha Pin Fins. Int J Heat Mass Transf 2019;128:504–15. link1

[56] Nasr MH, Green CE, Kottke PA, Zhang X, Sarvey TE, Joshi YK, et al. Hotspot thermal management with flow boiling of refrigerant in ultrasmall microgaps. J Electron Packag 2017;139(1):011006. link1

[57] Conrad M, De Doncker RW, Schniedenharn M, Diatlov A. Packaging for power semiconductors based on the 3D printing technology selective laser melting. In: Proceedings of 2014 16th European Conference on Power Electronics and Applications; 2014 Aug 26–28; Lappeenranta, Finland. IEEE; 2014. p. 1–7.

[58] Conrad M, Diatlov A, De Doncker RW. Implementation aspects of on-chip printed micro heat sinks for power semiconductors. In: Proceedings of 2015 IEEE Energy Conversion Congress and Exposition (ECCE); 2015 Sep 20–24; Montreal, QC, Canada. IEEE; 2015. p. 5716–23.

[59] Conrad M, Diatlov A, De Doncker RW. Purpose, potential and realization of chip-attached micro-pin fin heat sinks. Microelectron Reliab 2015;55(9– 10):1992–6. link1

[60] Roy NK, Dibua OG, Jou W, He F, Jeong J, Wang Y, et al. A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond, and continuous wave lasers. J Micro Nano-Manuf 2018;6(1):010903. link1

[61] Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA. A novel microscale selective laser sintering (l-SLS) process for the fabrication of microelectronic parts. Microsyst Nanoeng 2019;5(1):1–14. link1

[62] Bhatti MS, Parisi MJ, Hayes AR, inventors; Coolit Systems Inc., assignee. Microchannel heat sink. United States patent US7331378B2. 2008 Feb 19.

[63] An index of patents with Donald Tilton listed as an inventor [Internet]. Radaris; c2022 [cited 2020 Aug 6]. Available from: https://radaris.com/f/ Donald/Tilton/Inventor. link1

[64] Andry PS, Colgan EG, Mok LS, Patel CS, Seeger DE, inventors; GlobalFoundries US Inc., assignee. Semiconductor integrated circuit chip packages having integrated microchannel cooling modules. United States patent US7230334B2. 2007 Jun 12.

[65] Lee PS, Garimella SV, Liu D. Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf 2005;48(9):1688–704. link1

[66] Gonzalez-Valle CU, Samir S, Ramos-Alvarado B. Experimental investigation of the cooling performance of 3D printed hybrid water-cooled heat sinks. Appl Therm Eng 2020;168:114823. link1

[67] Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF. Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. Phys Rev B 1993;47(22):14850–6. link1

[68] McConnell AD, Uma S, Goodson KE. Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 2001;10(3):360–9. link1

[69] Monachon C, Weber L, Dames C. Thermal boundary conductance: a materials science perspective. Annu Rev Mater Res 2016;46:433–63. link1

[70] Assy A, Gomès S. Heat transfer at nanoscale contacts investigated with scanning thermal microscopy. Appl Phys Lett 2015;107(4):043105. link1

[71] Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys 1989;61 (3):605–68. link1

[72] Hopkins PE, Phinney LM, Serrano JR, Beechem TE. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. In: Proceedings of 2010 14th International Heat Transfer Conference; 2010 Aug 8–13; Washington, DC, USA. New York City: ASME; 2010. p. 313–9.

[73] Schiffres SN, Harish S, Maruyama S, Shiomi J, Malen JA. Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control. ACS Nano 2013;7(12):11183–9. link1

[74] Majumdar S, Sierra-Suarez JA, Schiffres SN, Ong WL, Higgs III CF, McGaughey AJ, et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett 2015;15(5):2985–91. link1

[75] Chrysler GM, Prasher R, inventors; TAHOE RESEARCH LTD., assignee. Integrated micro channels and manifold/plenum using separate silicon or low-cost polycrystalline silicon. United States patent US6992382B2. 2006 Jan 31.

[76] Bezama RJ, Colgan EG, Magerlein JH, Schmidt RR, inventors; GlobalFoundries US Inc., assignee. Apparatus and methods for microchannel cooling of semiconductor integrated circuit packages. United States patent US7139172B2. 2006 Nov 21.

[77] Hodes MS, Kolodner PR, Krupenkin TN, Lee W, Lyons AM, Salamon TR, et al., inventors; Nokia of America Corp., assignee. Techniques for microchannel cooling. United States patent US7204298B2. 2007 Apr 17.

[78] Altman DH, Gupta A, Tyhach M. Development of a diamond microfluidicsbased intra-chip cooling technology for GaN. In: Proceedings of ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels; 2015 Jul 6–9; San Francisco, CA, USA. New York City: ASME; 2015.

[79] Campbell G, Eppich H, Lang K, Creamer C, Yurovchak T, Chu K, et al. Advanced cooling designs for GaN-on-diamond MMICs. In: Proceedings of ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels; 2015 Jul 6–9; San Francisco, CA, USA. New York City: ASME; 2015.

[80] Drummond KP, Weibel JA, Garimella SV, Back D, Janes DB, Sinanis MD, et al. Evaporative intrachip hotspot cooling with a hierarchical manifold microchannel heat sink array. In: Proceedings of 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2016 May 31–Jun 3; Las Vegas, NV, USA. IEEE; 2016. p. 307–15.

[81] Radmard V, Hadad Y, Rangarajan S, Hoang CH, Fallahtafti N, Arvin CL, et al. Multi-objective optimization of a chip-attached micro pin fin liquid cooling system. Appl Therm Eng 2021;195:117187. link1

[82] Radmard V, Azizi A, Rangarajan S, Fallahtafti N, Hoang CH, Mohsenian G, et al. Performance analysis of impinging chip-attached micro pin fin direct liquid cooling package for hotspot targeted applications. In: Proceedings of 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2021 Jun 1–4; San Diego, CA, USA. IEEE; 2021. p. 220–8.

[83] Fallahtafti N, Rangarajan S, Hadad Y, Arvin C, Sikka K, Hoang CH, et al. Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications. Int J Heat Mass Transf 2022;192:122897. link1

[84] Manaserh YMA, Gharaibeh AR, Tradat MI, Rangarajan S, Sammakia BG, Alissa HA. Multi-objective optimization of 3D printed liquid cooled heat sink with guide vanes for targeting hotspots in high heat flux electronics. Int J Heat Mass Transf 2022;184:122287. link1

[85] Patil CM, Kandlikar SG. Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels. Int J Heat Mass Transf 2014;79:816–28. link1

[86] Xu ZG, Zhao CY. Experimental study on pool boiling heat transfer in gradient metal foams. Int J Heat Mass Transf 2015;85:824–9. link1

[87] Liang G, Mudawar I. Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf 2019;128:892–933. link1

[88] Wong KK, Leong KC. Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting. Int J Heat Mass Transf 2018;121:46–63. link1

[89] MacNamara RJ, Lupton TL, Lupoi R, Robinson AJ. Enhanced nucleate pool boiling on copper-diamond textured surfaces. Appl Therm Eng 2019;162:114145. link1

[90] Gess JL, Bhavnani SH, Johnson RW. Experimental investigation of a direct liquid immersion cooled prototype for high performance electronic systems. IEEE Trans Compon Packag Manuf Technol 2015;5(10):1451–64. link1

[91] Al Masri M, Cioulachtjian S, Veillas C, Verrier I, Jourlin Y, Ibrahim J, et al. Nucleate boiling on ultra-smooth surfaces: explosive incipience and homogeneous density of nucleation sites. Exp Therm Fluid Sci 2017;88:24–36. link1

[92] Kim J, Jun S, Laksnarain R, You SM. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf 2016;101:992–1002. link1

[93] Klein GJ, Westwater JW. Heat transfer from multiple spines to boiling liquids. AIChE J 1971;17(5):1050–6. link1

[94] Rainey KN, You SM. Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72. J Heat Transfer 2000;122 (3):509–16. link1

[95] Zhang M, Lian K. Using bulk micromachined structures to enhance pool boiling heat transfer. Microsyst Technol 2008;14(9–11):1499–505. link1

[96] Honda H, Takamastu H, Wei JJ. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness. J Heat Transfer 2002;124(2):383–90. link1

[97] Xu J, Ji X, Zhang W, Liu G. Pool boiling heat transfer of ultra-light copper foam with open cells. Int J Multiph Flow 2008;34(11):1008–22. link1

[98] Yang Y, Ji X, Xu J. Pool boiling heat transfer on copper foam covers with water as working fluid. Int J Therm Sci 2010;49(7):1227–37. link1

[99] Jun S, Kim J, You SM, Kim HY. Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water. Int J Heat Mass Transf 2016;103:277–84. link1

[100] Haghshenas K, Setz B, Bloch Y, Aiello M. Enough hot air: the role of immersion cooling. 2022. arXiv:2205.04257.

[101] Ramakrishnan B, Alissa H, Manousakis I, Lankston R, Bianchini R, Kim W, et al. CPU overclocking: a performance assessment of air, cold plates, and twophase immersion cooling. IEEE Trans Compon Packag Manuf Technol 2021;11 (10):1703–15. link1

Related Research