2016-12-25 , Volume 2 Issue 4

Cover illustration

  •  

    Download cover

  • Select all
    News & Highlights
  • News & Highlights
    Climate Agreement
    [Author(id=1166057141376311354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677371806007, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057141527306300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677371806007, authorId=1166057141376311354, language=EN, stringName=Lance A. Davis, firstName=Lance A., middleName=null, lastName=Davis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057141640552509, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677371806007, authorId=1166057141376311354, language=CN, stringName=Lance A. Davis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lance A. Davis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Reflections on the Three Gorges Project since Its Operation
    [Author(id=1166056319900902200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830138596680668, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056320098034490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830138596680668, authorId=1166056319900902200, language=EN, stringName=Shouren Zheng, firstName=Shouren, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Changjiang Water Resources Commission, Ministry of Water Resources, Wuhan 430010, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056320290972475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830138596680668, authorId=1166056319900902200, language=CN, stringName=郑守仁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Changjiang Water Resources Commission, Ministry of Water Resources, Wuhan 430010, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shouren Zheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Performance Assessment and Outlook of China’s Emission-Trading Scheme
    [Author(id=1166057479726621265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057479852450387, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057479726621265, language=EN, stringName=Dabo Guan, firstName=Dabo, middleName=null, lastName=Guan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tyndall Centre for Climate Change Research, School of International Development, University of East Anglia, Norwich NR4 7TJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057481026855508, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057479726621265, language=CN, stringName=关大博, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tyndall Centre for Climate Change Research, School of International Development, University of East Anglia, Norwich NR4 7TJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057482025099864, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057482163511899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482025099864, language=EN, stringName=Yuli Shan, firstName=Yuli, middleName=null, lastName=Shan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tyndall Centre for Climate Change Research, School of International Development, University of East Anglia, Norwich NR4 7TJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057482272563805, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482025099864, language=CN, stringName=Yuli Shan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Tyndall Centre for Climate Change Research, School of International Development, University of East Anglia, Norwich NR4 7TJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057482381615712, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057482520027747, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482381615712, language=EN, stringName=Zhu Liu, firstName=Zhu, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA 91125, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057482616496741, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482381615712, language=CN, stringName=刘竹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA 91125, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057482708771432, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057482830406251, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482708771432, language=EN, stringName=Kebin He, firstName=Kebin, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057482926875246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830700532752738, authorId=1166057482708771432, language=CN, stringName=贺克斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Dabo Guan , Yuli Shan , Zhu Liu , Kebin He

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    High-Speed Rail: Opportunities and Threats
    [Author(id=1166057287971430633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830742412878293, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057288114036971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830742412878293, authorId=1166057287971430633, language=EN, stringName=Michel Leboeuf, firstName=Michel, middleName=null, lastName=Leboeuf, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Honorary Chairman of UIC Intercity & High Speed Committee, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057288223088876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830742412878293, authorId=1166057287971430633, language=CN, stringName=Michel Leboeuf, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Honorary Chairman of UIC Intercity & High Speed Committee, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Michel Leboeuf

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Heading toward Artificial Intelligence 2.0
    [Author(id=1166057138796814371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677623464248, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057138931032101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677623464248, authorId=1166057138796814371, language=EN, stringName=Yunhe Pan, firstName=Yunhe, middleName=null, lastName=Pan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057139312713767, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830677623464248, authorId=1166057138796814371, language=CN, stringName=潘云鹤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yunhe Pan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Infrastructure for China’s Ecologically Balanced Civilization
    [Author(id=1166057881721299333, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057882946036104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057881721299333, language=EN, stringName=Chris Kennedy, firstName=Chris, middleName=null, lastName=Kennedy, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057883063476617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057881721299333, language=CN, stringName=Chris Kennedy, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057883172528523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057883306746253, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057883172528523, language=EN, stringName=Ma Zhong, firstName=Ma, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057883466129806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057883172528523, language=CN, stringName=Ma Zhong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057883579376016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057883730370962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057883579376016, language=EN, stringName=Jan Corfee-Morlot, firstName=Jan, middleName=null, lastName=Corfee-Morlot, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Organization for Economic Co-operation and Development, Paris 75775, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057883852005779, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831213487743120, authorId=1166057883579376016, language=CN, stringName=Jan Corfee-Morlot, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Organization for Economic Co-operation and Development, Paris 75775, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Kennedy , Ma Zhong , Jan Corfee-Morlot

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation
    [Author(id=1166058009031008349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058009165226079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009031008349, language=EN, stringName=Julia E. Vidonish, firstName=Julia E., middleName=null, lastName=Vidonish, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058009299443808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009031008349, language=CN, stringName=Julia E. Vidonish, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058009395912802, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058009525936228, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009395912802, language=EN, stringName=Kyriacos Zygourakis, firstName=Kyriacos, middleName=null, lastName=Zygourakis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058009626599525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009395912802, language=CN, stringName=Kyriacos Zygourakis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058009727262823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058009857286249, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009727262823, language=EN, stringName=Caroline A. Masiello, firstName=Caroline A., middleName=null, lastName=Masiello, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Earth Science, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058009970532458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058009727262823, language=CN, stringName=Caroline A. Masiello, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Earth Science, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058010071195756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058010205413486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058010071195756, language=EN, stringName=Gabriel Sabadell, firstName=Gabriel, middleName=null, lastName=Sabadell, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Chevron Energy Technology Company, Houston, TX 77002, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058010306076783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058010071195756, language=CN, stringName=Gabriel Sabadell, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Chevron Energy Technology Company, Houston, TX 77002, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058010406740081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058010536763507, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058010406740081, language=EN, stringName=Pedro J. J. Alvarez, firstName=Pedro J. J., middleName=null, lastName=Alvarez, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058010633232501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831246006182053, authorId=1166058010406740081, language=CN, stringName=Pedro J. J. Alvarez, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Julia E. Vidonish , Kyriacos Zygourakis , Caroline A. Masiello , Gabriel Sabadell , Pedro J. J. Alvarez

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment
    [Author(id=1166057504041001716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057504171025143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, authorId=1166057504041001716, language=EN, stringName=Wen-Wei Li, firstName=Wen-Wei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057504275882745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, authorId=1166057504041001716, language=CN, stringName=李文卫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057504372351740, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057504502375167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, authorId=1166057504372351740, language=EN, stringName=Han-Qing Yu, firstName=Han-Qing, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057504607232769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830695587668302, authorId=1166057504372351740, language=CN, stringName=俞汉青, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wen-Wei Li , Han-Qing Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Clean Coal Technologies in China: Current Status and Future Perspectives
    [Author(id=1166057968358843026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057968484672151, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057968358843026, language=EN, stringName=Shiyan Chang, firstName=Shiyan, middleName=null, lastName=Chang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057968610501273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057968358843026, language=CN, stringName=常世彦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057968706970270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057968870548131, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057968706970270, language=EN, stringName=Jiankun Zhuo, firstName=Jiankun, middleName=null, lastName=Zhuo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057968971211431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057968706970270, language=CN, stringName=卓建坤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057969063486122, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057969210286766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969063486122, language=EN, stringName=Shuo Meng, firstName=Shuo, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057969306755760, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969063486122, language=CN, stringName=孟朔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057969399030452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057969554219706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969399030452, language=EN, stringName=Shiyue Qin, firstName=Shiyue, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China
    b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057969654883003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969399030452, language=CN, stringName=秦士跃, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China
    b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057969747157694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057969902346946, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969747157694, language=EN, stringName=Qiang Yao, firstName=Qiang, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China
    b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057969998815940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831234249547930, authorId=1166057969747157694, language=CN, stringName=姚强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China
    b  Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Shiyan Chang , Jiankun Zhuo , Shuo Meng , Shiyue Qin , Qiang Yao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Sustainable Application of a Novel Water Cycle Using Seawater for Toilet Flushing
    [Author(id=1166057603353731072, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057603446005761, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603353731072, language=EN, stringName=Xiaoming Liu, firstName=Xiaoming, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057603546669058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603353731072, language=CN, stringName=柳晓明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057603638943748, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057603731218437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603638943748, language=EN, stringName=Ji Dai, firstName=Ji, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057603827687430, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603638943748, language=CN, stringName=戴吉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057603924156424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057604020625417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603924156424, language=EN, stringName=Di Wu, firstName=Di, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057604112900106, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057603924156424, language=CN, stringName=吴镝, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057604213563404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057604305838093, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604213563404, language=EN, stringName=Feng Jiang, firstName=Feng, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057604402307086, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604213563404, language=CN, stringName=江峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057604494581776, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057604591050769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604494581776, language=EN, stringName=Guanghao Chen, firstName=Guanghao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057604683325458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604494581776, language=CN, stringName=陈光浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057604775600148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057604872069141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604775600148, language=EN, stringName=Ho-Kwong Chui, firstName=Ho-Kwong, middleName=null, lastName=Chui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057604964343830, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057604775600148, language=CN, stringName=徐浩光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057605065007128, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057605157281817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057605065007128, language=EN, stringName=Mark C. M. van Loosdrecht, firstName=Mark C. M. van, middleName=null, lastName=Loosdrecht, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057605257945114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830734712136138, authorId=1166057605065007128, language=CN, stringName=Mark C. M. van Loosdrecht, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaoming Liu , Ji Dai , Di Wu , Feng Jiang , Guanghao Chen , Ho-Kwong Chui , Mark C. M. van Loosdrecht

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
    [Author(id=1166057991410738147, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057991570121703, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057991410738147, language=EN, stringName=Jean-Ann James, firstName=Jean-Ann, middleName=null, lastName=James, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057991666590696, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057991410738147, language=CN, stringName=Jean-Ann James, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057991763059690, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057991918248943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057991763059690, language=EN, stringName=Valerie M. Thomas, firstName=Valerie M., middleName=null, lastName=Thomas, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    d School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057992018912241, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057991763059690, language=CN, stringName=Valerie M. Thomas, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c  H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    d School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057992111186931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057992270570488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992111186931, language=EN, stringName=Arka Pandit, firstName=Arka, middleName=null, lastName=Pandit, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057992371233786, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992111186931, language=CN, stringName=Arka Pandit, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057992463508476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057992589337600, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992463508476, language=EN, stringName=Duo Li, firstName=Duo, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Crittenden and Associates, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057992685805568, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992463508476, language=CN, stringName=Duo Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Crittenden and Associates, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057992778080259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057992941658120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992778080259, language=EN, stringName=John C. Crittenden, firstName=John C., middleName=null, lastName=Crittenden, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057993038127114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831240020910237, authorId=1166057992778080259, language=CN, stringName=John C. Crittenden, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jean-Ann James , Valerie M. Thomas , Arka Pandit , Duo Li , John C. Crittenden

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World
    [Author(id=1166057523645178693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057523775202119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057523645178693, language=EN, stringName=Qiong Zhang, firstName=Qiong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057523875865416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057523645178693, language=CN, stringName=Qiong Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057523976528714, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057524106552140, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057523976528714, language=EN, stringName=Christine Prouty, firstName=Christine, middleName=null, lastName=Prouty, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057524207215437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057523976528714, language=CN, stringName=Christine Prouty, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057524307878735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057524437902161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057524307878735, language=EN, stringName=Julie B. Zimmerman, firstName=Julie B., middleName=null, lastName=Zimmerman, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Yale University, New Haven, CT 06520, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057524542759762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057524307878735, language=CN, stringName=Julie B. Zimmerman, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Yale University, New Haven, CT 06520, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057524639228756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057524794418006, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057524639228756, language=EN, stringName=James R. Mihelcic, firstName=James R., middleName=null, lastName=Mihelcic, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057524890886999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830702088839525, authorId=1166057524639228756, language=CN, stringName=James R. Mihelcic, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  University of South Florida, Tampa, FL 33620, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Qiong Zhang , Christine Prouty , Julie B. Zimmerman , James R. Mihelcic

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Cemented Material Dam: A New, Environmentally Friendly Type of Dam
    [Author(id=1166056090577330232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056090715742271, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056090577330232, language=EN, stringName=Jinsheng Jia, firstName=Jinsheng, middleName=null, lastName=Jia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056090816405572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056090577330232, language=CN, stringName=贾金生, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056090921263178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056091063869517, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056090921263178, language=EN, stringName=Michel Lino, firstName=Michel, middleName=null, lastName=Lino, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056091164532814, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056090921263178, language=CN, stringName=金峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056091269390416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056091403608146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056091269390416, language=EN, stringName=Feng Jin, firstName=Feng, middleName=null, lastName=Jin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056091495882835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829738653016823, authorId=1166056091269390416, language=CN, stringName=郑璀莹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Institute of Water Resources and Hydropower Research, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jinsheng Jia , Michel Lino , Feng Jin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Major Technologies for Safe Construction of High Earth-Rockfill Dams
    [Author(id=1166056198329000370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056198475801012, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, authorId=1166056198329000370, language=EN, stringName=Hongqi Ma, firstName=Hongqi, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Huaneng Lancang River Hydropower Inc., Kunming 650214, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056198593241525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, authorId=1166056198329000370, language=CN, stringName=马洪琪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Huaneng Lancang River Hydropower Inc., Kunming 650214, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056198706487735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056198853288377, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, authorId=1166056198706487735, language=EN, stringName=Fudong Chi, firstName=Fudong, middleName=null, lastName=Chi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Huaneng Lancang River Hydropower Inc., Kunming 650214, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056198974923194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159829795695551424, authorId=1166056198706487735, language=CN, stringName=迟福东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Huaneng Lancang River Hydropower Inc., Kunming 650214, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hongqi Ma , Fudong Chi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine
    [Author(id=1166058116820427105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058116950450531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058116820427105, language=EN, stringName=Tomomi Uchiyama, firstName=Tomomi, middleName=null, lastName=Uchiyama, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058117046919524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058116820427105, language=CN, stringName=Tomomi Uchiyama, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058117147582822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058117273411944, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117147582822, language=EN, stringName=Satoshi Honda, firstName=Satoshi, middleName=null, lastName=Honda, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058117369880937, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117147582822, language=CN, stringName=Satoshi Honda, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058117470544235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058117596373357, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117470544235, language=EN, stringName=Tomoko Okayama, firstName=Tomoko, middleName=null, lastName=Okayama, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Faculty of Human Studies, Taisho University, Tokyo 170-8470, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058117697036654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117470544235, language=CN, stringName=Tomoko Okayama, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Faculty of Human Studies, Taisho University, Tokyo 170-8470, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058117793505648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058117923529074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117793505648, language=EN, stringName=Tomohiro Degawa, firstName=Tomohiro, middleName=null, lastName=Degawa, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058118024192371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831317053497649, authorId=1166058117793505648, language=CN, stringName=Tomohiro Degawa, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Tomomi Uchiyama , Satoshi Honda , Tomoko Okayama , Tomohiro Degawa

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges
    [Author(id=1166057746815705313, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830803028959924, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057746949923043, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830803028959924, authorId=1166057746815705313, language=EN, stringName=Joris Smits, firstName=Joris, middleName=null, lastName=Smits, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, Delft 2628 BL, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057747046392036, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830803028959924, authorId=1166057746815705313, language=CN, stringName=Joris Smits, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, Delft 2628 BL, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Joris Smits

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Train-Bridge Dynamic Interaction Analysis Method and Its Experimental Validation
    [Author(id=1166057387854586268, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057387980415390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057387854586268, language=EN, stringName=Nan Zhang, firstName=Nan, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057388076884383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057387854586268, language=CN, stringName=张楠, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057388169159073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057388294988195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057388169159073, language=EN, stringName=Yuan Tian, firstName=Yuan, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057388391457188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057388169159073, language=CN, stringName=田园, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057388483731878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057388609561000, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057388483731878, language=EN, stringName=He Xia, firstName=He, middleName=null, lastName=Xia, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057388706029993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830790404104822, authorId=1166057388483731878, language=CN, stringName=夏禾, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Nan Zhang , Yuan Tian , He Xia

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.