2017-01-20 , Volume 3 Issue 1

Cover illustration

  •  

    Current progress in nano-biomaterials, gene modification, and extracellular matrix tissue engineering technologies is providing us with new perspectives, and will bring future breakthroughs in tissue engineering and translational medicine. Topographies of nanomaterials can enhance cell processes and cell migration (bottom left figure); microvilli in a material’s topography and the stiffness of a material’s microstate affect cell adhesion, cell behavior, and cell differentiation (the second figure from left); an extracellular matrix and silk fibroin-based tissue engineered nerve is constructed (the third figure from left); and ncRNAs modified by nanoparticles are delivered into a target cell (top right figure).


  • Select all
    Editorial
  • Editorial
    How Does the Microbiota Affect Human Health?
    [Author(id=1166059072018637819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832127137177926, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059072140272638, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832127137177926, authorId=1166059072018637819, language=EN, stringName=Lanjuan Li, firstName=Lanjuan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059072236741632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832127137177926, authorId=1166059072018637819, language=CN, stringName=李兰娟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lanjuan Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Tissue Engineering Is Under Way
    [Author(id=1166059565382033978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832286810136942, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059565507863100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832286810136942, authorId=1166059565382033978, language=EN, stringName=Xiaosong Gu, firstName=Xiaosong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chief of the Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059565608526397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832286810136942, authorId=1166059565382033978, language=CN, stringName=顾晓松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chief of the Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaosong Gu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering
    [Author(id=1166059422494679787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059422624703215, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059422494679787, language=EN, stringName=Shiying Li, firstName=Shiying, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059422716977905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059422494679787, language=CN, stringName=李石营, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059422809252596, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059422935081720, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059422809252596, language=EN, stringName=Tianmei Qian, firstName=Tianmei, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059423027356410, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059422809252596, language=CN, stringName=钱天梅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059423123825405, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059423279014657, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423123825405, language=EN, stringName=Xinghui Wang, firstName=Xinghui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059423375483652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423123825405, language=CN, stringName=王星辉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059423471952648, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059423593587467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423471952648, language=EN, stringName=Jie Liu, firstName=Jie, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059423690056461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423471952648, language=CN, stringName=刘杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059423786525455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059423912354578, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423786525455, language=EN, stringName=Xiaosong Gu, firstName=Xiaosong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059424013017877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832304686260599, authorId=1166059423786525455, language=CN, stringName=顾晓松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shiying Li , Tianmei Qian , Xinghui Wang , Jie Liu , Xiaosong Gu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies
    [Author(id=1166056510750122669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166056510951449265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056510750122669, language=EN, stringName=Jorge L. Escobar Ivirico, firstName=Jorge L. Escobar, middleName=null, lastName=Ivirico, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056511056306866, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056510750122669, language=CN, stringName=Jorge L. Escobar Ivirico, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056511156970164, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166056511354102456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511156970164, language=EN, stringName=Maumita Bhattacharjee, firstName=Maumita, middleName=null, lastName=Bhattacharjee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056511458960057, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511156970164, language=CN, stringName=Maumita Bhattacharjee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056511563817659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056511760949951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511563817659, language=EN, stringName=Emmanuel Kuyinu, firstName=Emmanuel, middleName=null, lastName=Kuyinu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056511861613248, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511563817659, language=CN, stringName=Emmanuel Kuyinu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056511966470850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056512268460745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511966470850, language=EN, stringName=Lakshmi S. Nair, firstName=Lakshmi S., middleName=null, lastName=Nair, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, e, f, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
    d Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    e Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    f  Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056512373318346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056511966470850, language=CN, stringName=Lakshmi S. Nair, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, e, f, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
    d Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    e Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    f  Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056512478175948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056512872440533, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056512478175948, language=EN, stringName=Cato T. Laurencin, firstName=Cato T., middleName=null, lastName=Laurencin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, e, f, g, h, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
    d Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    e Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    f  Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
    g  Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
    h  Department of Chemical and Biomolecular Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056512981492438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830119139304381, authorId=1166056512478175948, language=CN, stringName=Cato T. Laurencin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, e, f, g, h, address=a  Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
    b Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
    c Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
    d Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    e Department of Materials Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA
    f  Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
    g  Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
    h  Department of Chemical and Biomolecular Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jorge L. Escobar Ivirico , Maumita Bhattacharjee , Emmanuel Kuyinu , Lakshmi S. Nair , Cato T. Laurencin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions
    [Author(id=1166059127484113435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059127668662815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059127484113435, language=EN, stringName=Yu Liu, firstName=Yu, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    c  Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059127765131808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059127484113435, language=CN, stringName=刘豫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    c  Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059127857406498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059128046150182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059127857406498, language=EN, stringName=Guangdong Zhou, firstName=Guangdong, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    c  Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059128142619175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059127857406498, language=CN, stringName=周广东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    c  Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059128234893865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059128419443245, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059128234893865, language=EN, stringName=Yilin Cao, firstName=Yilin, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    d  Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059128520106542, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832146741354870, authorId=1166059128234893865, language=CN, stringName=曹谊林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a  Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    b  National Tissue Engineering Research Center of China, Shanghai 200241, China
    d  Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yu Liu , Guangdong Zhou , Yilin Cao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography
    [Author(id=1166059744332014019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059744457843141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744332014019, language=EN, stringName=Yong Yang, firstName=Yong, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a a Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059744571089350, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744332014019, language=CN, stringName=Yong Yang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059744663364040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059744759833033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744663364040, language=EN, stringName=Xiaosong Gu, firstName=Xiaosong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059744856302026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744663364040, language=CN, stringName=顾晓松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=2, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059744952771020, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059745082794446, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744952771020, language=EN, stringName=Kam W. Leong, firstName=Kam W., middleName=null, lastName=Leong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c c Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059745175069135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832634383721291, authorId=1166059744952771020, language=CN, stringName=Kam W. Leong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yong Yang , Xiaosong Gu , Kam W. Leong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite
    [Author(id=1166059297407951171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059297537974597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059297407951171, language=EN, stringName=Alessandro Pistone, firstName=Alessandro, middleName=null, lastName=Pistone, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059297642832198, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059297407951171, language=CN, stringName=Alessandro Pistone, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059297743495496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059297877713226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059297743495496, language=EN, stringName=Daniela Iannazzo, firstName=Daniela, middleName=null, lastName=Iannazzo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059297978376523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059297743495496, language=CN, stringName=Daniela Iannazzo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059298079039821, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059298217451855, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298079039821, language=EN, stringName=Claudia Espro, firstName=Claudia, middleName=null, lastName=Espro, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059298318115152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298079039821, language=CN, stringName=Claudia Espro, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059298414584146, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059298552996180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298414584146, language=EN, stringName=Signorino Galvagno, firstName=Signorino, middleName=null, lastName=Galvagno, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059298653659477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298414584146, language=CN, stringName=Signorino Galvagno, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Engineering, University of Messina, Messina 98166, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059298754322775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059298892734809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298754322775, language=EN, stringName=Anna Tampieri, firstName=Anna, middleName=null, lastName=Tampieri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059298989203802, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059298754322775, language=CN, stringName=Anna Tampieri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059299094061404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059299228279134, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299094061404, language=EN, stringName=Monica Montesi, firstName=Monica, middleName=null, lastName=Montesi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059299328942431, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299094061404, language=CN, stringName=Monica Montesi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059299433800033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059299568017763, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299433800033, language=EN, stringName=Silvia Panseri, firstName=Silvia, middleName=null, lastName=Panseri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059299668681060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299433800033, language=CN, stringName=Silvia Panseri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059299773538662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059299903562088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299773538662, language=EN, stringName=Monica Sandri, firstName=Monica, middleName=null, lastName=Sandri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059300016808297, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832330875494813, authorId=1166059299773538662, language=CN, stringName=Monica Sandri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Alessandro Pistone , Daniela Iannazzo , Claudia Espro , Signorino Galvagno , Anna Tampieri , Monica Montesi , Silvia Panseri , Monica Sandri

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface
    [Author(id=1166059237630730399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059237794308258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059237630730399, language=EN, stringName=Marc Mac Giolla Eain, firstName=Marc Mac Giolla, middleName=null, lastName=Eain, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg
    b  Center for Applied Nanobioscience and Medicine, University of Arizona, Tucson, AZ 85721, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059237899165859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059237630730399, language=CN, stringName=Marc Mac Giolla Eain, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg
    b  Center for Applied Nanobioscience and Medicine, University of Arizona, Tucson, AZ 85721, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059237995634853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059238125658279, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059237995634853, language=EN, stringName=Joanna Baginska, firstName=Joanna, middleName=null, lastName=Baginska, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059238230515880, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059237995634853, language=CN, stringName=Joanna Baginska, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059238331179178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059238461202604, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059238331179178, language=EN, stringName=Kacy Greenhalgh, firstName=Kacy, middleName=null, lastName=Greenhalgh, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059238566060205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059238331179178, language=CN, stringName=Kacy Greenhalgh, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059238666723503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059238805135537, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059238666723503, language=EN, stringName=Joëlle V. Fritz, firstName=Joëlle V., middleName=null, lastName=Fritz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059238905798834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059238666723503, language=CN, stringName=Joëlle V. Fritz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059239002267828, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059239140679862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059239002267828, language=EN, stringName=Frederic Zenhausern, firstName=Frederic, middleName=null, lastName=Zenhausern, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Applied Nanobioscience and Medicine, University of Arizona, Tucson, AZ 85721, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059239442669751, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059239002267828, language=CN, stringName=Frederic Zenhausern, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Applied Nanobioscience and Medicine, University of Arizona, Tucson, AZ 85721, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059239643996345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059239778214075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059239643996345, language=EN, stringName=Paul Wilmes, firstName=Paul, middleName=null, lastName=Wilmes, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059239878877372, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832147735404920, authorId=1166059239643996345, language=CN, stringName=Paul Wilmes, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Marc Mac Giolla Eain , Joanna Baginska , Kacy Greenhalgh , Joëlle V. Fritz , Frederic Zenhausern , Paul Wilmes

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data
    [Author(id=1166059087059411001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059087227183164, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087059411001, language=EN, stringName=Jian Xu, firstName=Jian, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059087323652157, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087059411001, language=CN, stringName=徐健, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059087424315455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059087638224962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087424315455, language=EN, stringName=Xiaoquan Su, firstName=Xiaoquan, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059087755665475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087424315455, language=CN, stringName=苏晓泉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059087856328773, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059088024100936, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087856328773, language=EN, stringName=Shi Huang, firstName=Shi, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059088124764233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059087856328773, language=CN, stringName=黄适, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, e, address=a  Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
    e  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059088225427531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059088355450957, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088225427531, language=EN, stringName=Xin Xu, firstName=Xin, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059088456114255, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088225427531, language=CN, stringName=徐欣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059088552583249, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059088690995283, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088552583249, language=EN, stringName=Xuedong Zhou, firstName=Xuedong, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059088791658580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088552583249, language=CN, stringName=周学东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059088892321878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059089030733912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088892321878, language=EN, stringName=Wei Huang, firstName=Wei, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059089127202905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059088892321878, language=CN, stringName=黄巍, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059089227866203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059089362083933, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059089227866203, language=EN, stringName=Rob Knight, firstName=Rob, middleName=null, lastName=Knight, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Microbiome Innovation, Department of Pediatrics, Department of Computer Science and Engineering, University of California San Diego, CA 92093, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059089458552926, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128911368520, authorId=1166059089227866203, language=CN, stringName=Rob Knight, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Microbiome Innovation, Department of Pediatrics, Department of Computer Science and Engineering, University of California San Diego, CA 92093, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jian Xu , Xiaoquan Su , Shi Huang , Xin Xu , Xuedong Zhou , Wei Huang , Rob Knight

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Human Microbiota in Health and Disease
    [Author(id=1166059856336708418, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059856433177413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856336708418, language=EN, stringName=Baohong Wang, firstName=Baohong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059856504480583, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856336708418, language=CN, stringName=王保红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059856575783754, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059856663864141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856575783754, language=EN, stringName=Mingfei Yao, firstName=Mingfei, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059856739361614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856575783754, language=CN, stringName=姚铭飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059856806470481, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059856902939476, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856806470481, language=EN, stringName=Longxian Lv, firstName=Longxian, middleName=null, lastName=Lv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059856970048342, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059856806470481, language=CN, stringName=吕龙贤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059857049740121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059857179763547, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059857049740121, language=EN, stringName=Zongxin Ling, firstName=Zongxin, middleName=null, lastName=Ling, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059857276232540, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059857049740121, language=CN, stringName=凌宗欣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059857343341406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059857439810400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059857343341406, language=EN, stringName=Lanjuan Li, firstName=Lanjuan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059857506919265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832593011106573, authorId=1166059857343341406, language=CN, stringName=李兰娟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Baohong Wang , Mingfei Yao , Longxian Lv , Zongxin Ling , Lanjuan Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Modulation of Gut Microbiota in Pathological States
    [Author(id=1166059199034745829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059199198323688, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199034745829, language=EN, stringName=Yulan Wang, firstName=Yulan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059199303181289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199034745829, language=CN, stringName=Yulan Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059199399650283, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059199529673709, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199399650283, language=EN, stringName=Baohong Wang, firstName=Baohong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059199634531310, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199399650283, language=CN, stringName=Baohong Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059199731000304, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059199865218034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199731000304, language=EN, stringName=Junfang Wu, firstName=Junfang, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059199970075635, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059199731000304, language=CN, stringName=Junfang Wu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059200066544629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059200200762359, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200066544629, language=EN, stringName=Xiangyang Jiang, firstName=Xiangyang, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059200305619960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200066544629, language=CN, stringName=Xiangyang Jiang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059200406283258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059200536306684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200406283258, language=EN, stringName=Huiru Tang, firstName=Huiru, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Collaborative Innovation Center of Genetics and Development, Shanghai International Center for Molecular Phenomics, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059200641164285, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200406283258, language=CN, stringName=Huiru Tang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Collaborative Innovation Center of Genetics and Development, Shanghai International Center for Molecular Phenomics, Shanghai 200433, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059200737633279, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059200968318976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200737633279, language=EN, stringName=Ole H. Nielsen, firstName=Ole H., middleName=null, lastName=Nielsen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen 1017, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059201064787969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832128382886215, authorId=1166059200737633279, language=CN, stringName=Ole H. Nielsen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen 1017, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yulan Wang , Baohong Wang , Junfang Wu , Xiangyang Jiang , Huiru Tang , Ole H. Nielsen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer
    [Author(id=1166059205909209110, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059206068592664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059205909209110, language=EN, stringName=Liuyang Zhao, firstName=Liuyang, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059206181838873, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059205909209110, language=CN, stringName=赵浏阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059206303473691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059206458662941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059206303473691, language=EN, stringName=Xiang Zhang, firstName=Xiang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059206576103454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059206303473691, language=CN, stringName=张翔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059206697738272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059206852927522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059206697738272, language=EN, stringName=Tao Zuo, firstName=Tao, middleName=null, lastName=Zuo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059206970368035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059206697738272, language=CN, stringName=左涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059207087808549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059207276552232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059207087808549, language=EN, stringName=Jun Yu, firstName=Jun, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China
    b  Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059207389798441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832131482476875, authorId=1166059207087808549, language=CN, stringName=于君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China
    b  Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Liuyang Zhao , Xiang Zhang , Tao Zuo , Jun Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    From Farming to Engineering: The Microbiota and Allergic Diseases
    [Author(id=1166056472837808526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056473018163601, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, authorId=1166056472837808526, language=EN, stringName=Dominique Angèle Vuitton, firstName=Dominique Angèle, middleName=null, lastName=Vuitton, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  University Bourgogne Franche-Comté, Besancon 25030, France
    b  Allergology Network of Franche-Comté, Besancon 25030, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056473127215506, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, authorId=1166056472837808526, language=CN, stringName=Dominique Angèle Vuitton, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  University Bourgogne Franche-Comté, Besancon 25030, France
    b  Allergology Network of Franche-Comté, Besancon 25030, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056473236267412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056473416622487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, authorId=1166056473236267412, language=EN, stringName=Jean-Charles Dalphin, firstName=Jean-Charles, middleName=null, lastName=Dalphin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  University Bourgogne Franche-Comté, Besancon 25030, France
    b  Allergology Network of Franche-Comté, Besancon 25030, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056473529868696, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830107755963317, authorId=1166056473236267412, language=CN, stringName=Jean-Charles Dalphin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  University Bourgogne Franche-Comté, Besancon 25030, France
    b  Allergology Network of Franche-Comté, Besancon 25030, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Dominique Angèle Vuitton , Jean-Charles Dalphin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Gut Microbiota, Tumorigenesis, and Liver Diseases
    [Author(id=1166059190188958566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059190356730732, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190188958566, language=EN, stringName=Guishuai Lv, firstName=Guishuai, middleName=null, lastName=Lv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
    b  National Center for Liver Cancer, Shanghai 201805, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059190453199726, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190188958566, language=CN, stringName=吕桂帅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
    b  National Center for Liver Cancer, Shanghai 201805, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059190553863026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059190683886456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190553863026, language=EN, stringName=Ningtao Cheng, firstName=Ningtao, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059190788744058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190553863026, language=CN, stringName=程宁涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059190893601660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059191078151041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190893601660, language=EN, stringName=Hongyang Wang, firstName=Hongyang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
    b  National Center for Liver Cancer, Shanghai 201805, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059191183008644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832126793244997, authorId=1166059190893601660, language=CN, stringName=王红阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
    b  National Center for Liver Cancer, Shanghai 201805, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Guishuai Lv , Ningtao Cheng , Hongyang Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Whether Probiotic Supplementation Benefits Rheumatoid Arthritis Patients: A Systematic Review and Meta-Analysis
    [Author(id=1166059445378801751, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059445492047963, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059445378801751, language=EN, stringName=Hudan Pan, firstName=Hudan, middleName=null, lastName=Pan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059445554962524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059445378801751, language=CN, stringName=潘胡丹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059445626265695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059445735317603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059445626265695, language=EN, stringName=Runze Li, firstName=Runze, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059446536429669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059445626265695, language=CN, stringName=李润泽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059446603538535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059446725173355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059446603538535, language=EN, stringName=Ting Li, firstName=Ting, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059446792282221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059446603538535, language=CN, stringName=李婷, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059446863585391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059446972637299, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059446863585391, language=EN, stringName=Jun Wang, firstName=Jun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059447043940469, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059446863585391, language=CN, stringName=王俊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059447111049335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059447220101243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059447111049335, language=EN, stringName=Liang Liu, firstName=Liang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059447291404413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832314882613631, authorId=1166059447111049335, language=CN, stringName=刘良, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
    b  Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Hudan Pan , Runze Li , Ting Li , Jun Wang , Liang Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    High-Speed EMU TCMS Design and LCC Technology Research
    [Author(id=1166059482838131087, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059482997514641, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059482838131087, language=EN, stringName=Hongwei Zhao, firstName=Hongwei, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Academy of Railway Sciences, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059483123343762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059482838131087, language=CN, stringName=赵红卫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  China Academy of Railway Sciences, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059483240784276, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059483404362134, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059483240784276, language=EN, stringName=Zhiping Huang, firstName=Zhiping, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059483521802647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059483240784276, language=CN, stringName=黄志平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059483647631769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059483807015324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059483647631769, language=EN, stringName=Ying Mei, firstName=Ying, middleName=null, lastName=Mei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059483920261533, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832336667828643, authorId=1166059483647631769, language=CN, stringName=梅樱, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hongwei Zhao , Zhiping Huang , Ying Mei

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Quality Monitoring of Porous Zein Scaffolds: A Novel Biomaterial
    [Author(id=1166059454300086485, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059454463664345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059454300086485, language=EN, stringName=Yue Zhang, firstName=Yue, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059454581104860, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059454300086485, language=CN, stringName=张玥, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059454698545375, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059454862123235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059454698545375, language=EN, stringName=Wei-Ying Li, firstName=Wei-Ying, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059454987952358, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059454698545375, language=CN, stringName=李伟迎, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059455113781481, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059455277359340, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059455113781481, language=EN, stringName=Run Lan, firstName=Run, middleName=null, lastName=Lan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059455394799853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059455113781481, language=CN, stringName=兰润, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059455516434671, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059455675818226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059455516434671, language=EN, stringName=Jin-Ye Wang, firstName=Jin-Ye, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059455797453045, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832328056922515, authorId=1166059455516434671, language=CN, stringName=王瑾晔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yue Zhang , Wei-Ying Li , Run Lan , Jin-Ye Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Multidecadal Trends in Large-Scale Annual Mean SATa Based on CMIP5 Historical Simulations and Future Projections
    [Author(id=1166059646873166524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059647112241856, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, authorId=1166059646873166524, language=EN, stringName=Nan Xing, firstName=Nan, middleName=null, lastName=Xing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    b  Beijing Meteorological Observatory, Beijing 100089, China
    c  Joint Center for Global Change Studies, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059647229682369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, authorId=1166059646873166524, language=CN, stringName=Nan Xing, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    b  Beijing Meteorological Observatory, Beijing 100089, China
    c  Joint Center for Global Change Studies, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059647351317187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059647552643782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, authorId=1166059647351317187, language=EN, stringName=Jianping Li, firstName=Jianping, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    c  Joint Center for Global Change Studies, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059647670084295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832321534779787, authorId=1166059647351317187, language=CN, stringName=Jianping Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    c  Joint Center for Global Change Studies, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Nan Xing , Jianping Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Dams and Floods
    [Author(id=1166059514228302351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832344968356277, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059514366714385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832344968356277, authorId=1166059514228302351, language=EN, stringName=F. Lempérière, firstName=F., middleName=null, lastName=Lempérière, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= HydroCoop, Paris 92190, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059514467377682, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832344968356277, authorId=1166059514228302351, language=CN, stringName=F. Lempérière, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= HydroCoop, Paris 92190, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] F. Lempérière

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Corrigendum to “High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning” 
    [Author(id=1166057153426546798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057153539793007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057153426546798, language=EN, stringName=He Zhuang, firstName=He, middleName=null, lastName=Zhuang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057153657233520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057153426546798, language=CN, stringName=He Zhuang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057153774674034, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057153883725939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057153774674034, language=EN, stringName=Liping Feng<, firstName=Liping, middleName=null, lastName=Feng<, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057153996972148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057153774674034, language=CN, stringName=Liping Feng<, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057154114412662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057154231853175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057154114412662, language=EN, stringName=Chao Wen, firstName=Chao, middleName=null, lastName=Wen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057154345099384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057154114412662, language=CN, stringName=Chao Wen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057155456589946, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057155574030459, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057155456589946, language=EN, stringName=Qiyuan Peng, firstName=Qiyuan, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057155704053884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057155456589946, language=CN, stringName=Qiyuan Peng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166057155947323518, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166057156056375423, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057155947323518, language=EN, stringName=Qizhi Tang, firstName=Qizhi, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166057157121728640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830689770168648, authorId=1166057155947323518, language=CN, stringName=Qizhi Tang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] He Zhuang , Liping Feng< , Chao Wen , Qiyuan Peng , Qizhi Tang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.