2017-04-20 , Volume 3 Issue 2

Cover illustration

  •  

    In response to the significant need to transform and promote the process industry in China, this issue presents the major existing limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and more. To promote a process industry that is based on high-end, smart, and green production, modern information technology should be utilized in the whole optimization process of production, management, and sales. This photograph is taken from the Sinopec Zhenhai Refining & Chemical Company, which is upheld as an example of smart manufacturing by the Ministry of Industry and Information Technology of the People’s Republic of China.


  • Select all
    Editorial
  • Editorial
    Smart and Optimal Manufacturing: The Key for the Transformation and Development of the Process Industry
    [Author(id=1166058160160170395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831183246811260, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058160290193821, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831183246811260, authorId=1166058160160170395, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058160382468510, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831183246811260, authorId=1166058160160170395, language=CN, stringName=钱锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Feng Qian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Toward Greener and Smarter Process Industries
    [Author(id=1166056794415096424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056794608034413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056794415096424, language=EN, stringName=Wei Ge, firstName=Wei, middleName=null, lastName=Ge, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056794717086319, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056794415096424, language=CN, stringName=葛蔚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056794834526833, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056795023270517, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056794834526833, language=EN, stringName=Li Guo, firstName=Li, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056795136516727, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056794834526833, language=CN, stringName=郭力, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056795249762938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056795438506623, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056795249762938, language=EN, stringName=Jinghai Li, firstName=Jinghai, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056795555947137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830492633686339, authorId=1166056795249762938, language=CN, stringName=李静海, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b  University of Chinese Academy of Sciences, Beijing 100049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wei Ge , Li Guo , Jinghai Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry
    [Author(id=1166058897346847346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058897481065076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058897346847346, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058897577534070, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058897346847346, language=CN, stringName=钱锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058897678197369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058897812415100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058897678197369, language=EN, stringName=Weimin Zhong, firstName=Weimin, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058897917272702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058897678197369, language=CN, stringName=钟伟民, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058898017936001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058898416394886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058898017936001, language=EN, stringName=Wenli Du, firstName=Wenli, middleName=null, lastName=Du, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058898517058183, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159832148180001145, authorId=1166058898017936001, language=CN, stringName=杜文莉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Feng Qian , Weimin Zhong , Wenli Du

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers
    [Author(id=1166058826584744272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831671900004680, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058826718962002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831671900004680, authorId=1166058826584744272, language=EN, stringName=Ian David Lockhart Bogle, firstName=Ian David Lockhart, middleName=null, lastName=Bogle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058826823819603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831671900004680, authorId=1166058826584744272, language=CN, stringName=Ian David Lockhart Bogle, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ian David Lockhart Bogle

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?
    [Author(id=1166058897028080234, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831728980287918, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058897179075180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831728980287918, authorId=1166058897028080234, language=EN, stringName=Mariano Martín, firstName=Mariano, middleName=null, lastName=Martín, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University of Salamanca, Salamanca 37008, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058897296515696, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831728980287918, authorId=1166058897028080234, language=CN, stringName=Martín Mariano, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Engineering, University of Salamanca, Salamanca 37008, Spain, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mariano Martín

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    New Trends in Olefin Production
    [Author(id=1166058684276204391, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058684406227817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684276204391, language=EN, stringName=Ismaël Amghizar, firstName=Ismaël, middleName=null, lastName=Amghizar, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058684506891114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684276204391, language=CN, stringName=Ismaël Amghizar, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058684607554412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058684737577838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684607554412, language=EN, stringName=Laurien A. Vandewalle, firstName=Laurien A., middleName=null, lastName=Vandewalle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058684838241135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684607554412, language=CN, stringName=Laurien A. Vandewalle, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058684943098737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058685073122163, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684943098737, language=EN, stringName=Kevin M. Van Geem, firstName=Kevin M. Van, middleName=null, lastName=Geem, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058685173785460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058684943098737, language=CN, stringName=Kevin M. Van Geem, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058685274448758, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058685408666488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058685274448758, language=EN, stringName=Guy B. Marin, firstName=Guy B., middleName=null, lastName=Marin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058685509329785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831698709995873, authorId=1166058685274448758, language=CN, stringName=Guy B. Marin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ismaël Amghizar , Laurien A. Vandewalle , Kevin M. Van Geem , Guy B. Marin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Smart Manufacturing for the Oil Refining and Petrochemical Industry
    [Author(id=1166058637086089824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058637241279074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637086089824, language=EN, stringName=Zhihong Yuan, firstName=Zhihong, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058637354525283, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637086089824, language=CN, stringName=袁志宏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058637467771493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058637622960743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637467771493, language=EN, stringName=Weizhong Qin, firstName=Weizhong, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  China Petroleum and Chemical Corporation Jiujiang Company, Jiujiang 332004, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058637740401256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637467771493, language=CN, stringName=覃伟中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  China Petroleum and Chemical Corporation Jiujiang Company, Jiujiang 332004, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058637853647466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058638004642412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637853647466, language=EN, stringName=Jinsong Zhao, firstName=Jinsong, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058638126277229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691374158161, authorId=1166058637853647466, language=CN, stringName=赵劲松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhihong Yuan , Weizhong Qin , Jinsong Zhao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Recent Progress on Data-Based Optimization for Mineral Processing Plants
    [Author(id=1166058656413442765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058656568632015, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058656413442765, language=EN, stringName=Jinliang Ding, firstName=Jinliang, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058656681878225, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058656413442765, language=CN, stringName=丁进良, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058656803513043, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058656958702293, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058656803513043, language=EN, stringName=Cuie Yang, firstName=Cuie, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058657071948502, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058656803513043, language=CN, stringName=杨翠娥, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058657197777624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058657373938394, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058657197777624, language=EN, stringName=Tianyou Chai, firstName=Tianyou, middleName=null, lastName=Chai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058657487184603, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831703927710067, authorId=1166058657197777624, language=CN, stringName=柴天佑, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jinliang Ding , Cuie Yang , Tianyou Chai

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Global Optimization of Nonlinear Blend-Scheduling Problems
    [Author(id=1166058384056312703, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058384182141825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384056312703, language=EN, stringName=Pedro A. Castillo Castillo, firstName=Pedro A. Castillo, middleName=null, lastName=Castillo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058384274416514, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384056312703, language=CN, stringName=Pedro A. Castillo Castillo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058384375079812, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058384500908934, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384375079812, language=EN, stringName=Pedro M. Castro, firstName=Pedro M., middleName=null, lastName=Castro, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058384593183623, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384375079812, language=CN, stringName=Pedro M. Castro, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058384689652617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058384811287435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384689652617, language=EN, stringName=Vladimir Mahalec, firstName=Vladimir, middleName=null, lastName=Mahalec, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058384907756428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831324401918262, authorId=1166058384689652617, language=CN, stringName=Vladimir Mahalec, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pedro A. Castillo Castillo , Pedro M. Castro , Vladimir Mahalec

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming
    [Author(id=1166058375982277385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058376116495117, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058375982277385, language=EN, stringName=Vassilis M. Charitopoulos, firstName=Vassilis M., middleName=null, lastName=Charitopoulos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058376212964113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058375982277385, language=CN, stringName=Vassilis M. Charitopoulos, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058376317821718, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058376447845148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058376317821718, language=EN, stringName=Lazaros G. Papageorgiou, firstName=Lazaros G., middleName=null, lastName=Papageorgiou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058376544314144, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058376317821718, language=CN, stringName=Lazaros G. Papageorgiou, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058376649171750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058376779195179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058376649171750, language=EN, stringName=Vivek Dua, firstName=Vivek, middleName=null, lastName=Dua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058376879858479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831303665279268, authorId=1166058376649171750, language=CN, stringName=Vivek Dua, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Vassilis M. Charitopoulos , Lazaros G. Papageorgiou , Vivek Dua

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Real-Time Assessment and Diagnosis of Process Operating Performance
    [Author(id=1166058749770261498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058749933839356, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, authorId=1166058749770261498, language=EN, stringName=Shabnam Sedghi, firstName=Shabnam, middleName=null, lastName=Sedghi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058750051279870, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, authorId=1166058749770261498, language=CN, stringName=Shabnam Sedghi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058750164526080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058750315520001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, authorId=1166058750164526080, language=EN, stringName=Biao Huang, firstName=Biao, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058750428766210, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831750270575043, authorId=1166058750164526080, language=CN, stringName=Biao Huang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shabnam Sedghi , Biao Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Upstream Operations in the Oil Industry: Rigorous Modeling of an Electrostatic Coalescer
    [Author(id=1166058479388647621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058479556419784, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058479388647621, language=EN, stringName=Francesco Rossi, firstName=Francesco, middleName=null, lastName=Rossi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy
    b  Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058479657083081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058479388647621, language=CN, stringName=Francesco Rossi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy
    b  Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058479761940683, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058479896158413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058479761940683, language=EN, stringName=Simone Colombo, firstName=Simone, middleName=null, lastName=Colombo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058479996821710, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058479761940683, language=CN, stringName=Simone Colombo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058480101679312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058480231702738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480101679312, language=EN, stringName=Sauro Pierucci, firstName=Sauro, middleName=null, lastName=Pierucci, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058480336560340, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480101679312, language=CN, stringName=Sauro Pierucci, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058480433029334, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058480600801496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480433029334, language=EN, stringName=Eliseo Ranzi, firstName=Eliseo, middleName=null, lastName=Ranzi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058480755990745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480433029334, language=CN, stringName=Eliseo Ranzi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058480932151515, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058481066369245, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480932151515, language=EN, stringName=Flavio Manenti, firstName=Flavio, middleName=null, lastName=Manenti, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058481167032542, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831378063843675, authorId=1166058480932151515, language=CN, stringName=Flavio Manenti, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Polytechnic University of Milan, Milan 20133, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Francesco Rossi , Simone Colombo , Sauro Pierucci , Eliseo Ranzi , Flavio Manenti

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment
    [Author(id=1166058792631853305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058792782848251, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, authorId=1166058792631853305, language=EN, stringName=Xiaobo Luo, firstName=Xiaobo, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058792896094460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, authorId=1166058792631853305, language=CN, stringName=罗小波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058793009340670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058793164529920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, authorId=1166058793009340670, language=EN, stringName=Meihong Wang, firstName=Meihong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058793281970433, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831826468496161, authorId=1166058793009340670, language=CN, stringName=Meihong Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaobo Luo , Meihong Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration
    [Author(id=1166059018138608501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059018268631927, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018138608501, language=EN, stringName=Sharifzadeh Mahdi, firstName=Sharifzadeh, middleName=null, lastName=Mahdi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059018369295224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018138608501, language=CN, stringName=Sharifzadeh Mahdi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059018469958522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059018604176252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018469958522, language=EN, stringName=Xingzhi Wang, firstName=Xingzhi, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059018700645245, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018469958522, language=CN, stringName=Xingzhi Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166059018801308543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166059018935526273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018801308543, language=EN, stringName=Nilay Shah, firstName=Nilay, middleName=null, lastName=Shah, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166059019036189570, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831832248247077, authorId=1166059018801308543, language=CN, stringName=Nilay Shah, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sharifzadeh Mahdi , Xingzhi Wang , Nilay Shah

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Optimal Bidding and Operation of a Power Plant with Solvent-Based Carbon Capture under a CO2 Allowance Market: A Solution with a Reinforcement Learning-Based Sarsa Temporal-Difference Algorithm
    [Author(id=1166058570119832056, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058570245661178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570119832056, language=EN, stringName=Ziang Li, firstName=Ziang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058570342130171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570119832056, language=CN, stringName=李子昂, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058570434404861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058570560233983, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570434404861, language=EN, stringName=Zhengtao Ding, firstName=Zhengtao, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058570656702976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570434404861, language=CN, stringName=丁正桃, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058570753171970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058570883195396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570753171970, language=EN, stringName=Meihong Wang, firstName=Meihong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058570979664389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831914855063603, authorId=1166058570753171970, language=CN, stringName=王美宏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ziang Li , Zhengtao Ding , Meihong Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China
    [Author(id=1166056877705585621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056877852386264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056877705585621, language=EN, stringName=Yihui Ding, firstName=Yihui, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056877957243867, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056877705585621, language=CN, stringName=丁一汇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056878066295774, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056878280205284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878066295774, language=EN, stringName=Ping Wu, firstName=Ping, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  National Climate Center, Beijing 100081, China
    b  Chinese Academy of Meteorological Sciences, Beijing 100081, China
    c  College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056878393451494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878066295774, language=CN, stringName=吴萍, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  National Climate Center, Beijing 100081, China
    b  Chinese Academy of Meteorological Sciences, Beijing 100081, China
    c  College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056878502503401, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056878645109740, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878502503401, language=EN, stringName=Yanju Liu, firstName=Yanju, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056878754161646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878502503401, language=CN, stringName=柳艳菊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166056878863213553, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166056879005819893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878863213553, language=EN, stringName=Yafang Song, firstName=Yafang, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166056879110677495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159830545179927134, authorId=1166056878863213553, language=CN, stringName=宋亚芳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Climate Center, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yihui Ding , Ping Wu , Yanju Liu , Yafang Song

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Changeto the Paris Agreement
    [Author(id=1166058891860697643, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058891994915373, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058891860697643, language=EN, stringName=Yun Gao, firstName=Yun, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Science & Technology and Climate Change, China Meteorological Administration, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058892091384366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058891860697643, language=CN, stringName=高云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Science & Technology and Climate Change, China Meteorological Administration, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058892192047664, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058892326265395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058892192047664, language=EN, stringName=Xiang Gao, firstName=Xiang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Energy Research Institute, National Development and Reform Commission, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058892426928694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058892192047664, language=CN, stringName=高翔, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Energy Research Institute, National Development and Reform Commission, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166058892523397691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166058892653421121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058892523397691, language=EN, stringName=Xiaohua Zhang, firstName=Xiaohua, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  National Center for Climate Change Strategy and International Cooperation (NCSC), Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166058892758278722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159831691969749336, authorId=1166058892523397691, language=CN, stringName=张晓华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  National Center for Climate Change Strategy and International Cooperation (NCSC), Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yun Gao , Xiang Gao , Xiaohua Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.