2018-06-28 , Volume 4 Issue 3

Cover illustration

  •  

    The non-contact original-state online real-time monitoring of complex liquids is very important in green industrial processes in many industries—including the petrochemical industry, nonferrous metal industry, and food industry—as well as in environmental engineering. For a long time analyzing complex liquids requires time-demanding and chemical-consuming pretreatments that make online real-time monitoring and control impossible. The advent of the first non-contact original-state online real-time monitoring equipment for complex liquids betokens the coming of time of a new generation of monitoring methods and equipment. This innovation breaks through the restrictions of traditional analytical theories and, without any pretreatment, is capable of detecting target substance concentration in solutions with high concentration, high salinity, strong coating, multi-ion states, and multi-phase coexistence. Its benefits include product quality improvement, time and cost savings, and pollutant reduction.


  • Select all
    Editorial
  • Editorial
    When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?
    [Author(id=1166065423423823912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836904730452206, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065423579013162, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836904730452206, authorId=1166065423423823912, language=EN, stringName=Ning Duan, firstName=Ning, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065423688065067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836904730452206, authorId=1166065423423823912, language=CN, stringName=段宁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ning Duan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • News & Highlights
    Falcon Heavy
    [Author(id=1166065148457837356, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836526102241815, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065148587860782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836526102241815, authorId=1166065148457837356, language=EN, stringName=Lance A. Davis, firstName=Lance A., middleName=null, lastName=Davis, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065148684329775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836526102241815, authorId=1166065148457837356, language=CN, stringName=Lance A. Davis, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Advisor, US National Academy of Engineering, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lance A. Davis

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Sustainable Management and Action in China under the Increasing Risks of Global Climate Change
    [Author(id=1166065221291926475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836589176185496, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065221426144205, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836589176185496, authorId=1166065221291926475, language=EN, stringName=Yihui Ding, firstName=Yihui, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Climate Center, China Meteorological Administration, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065221531001806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836589176185496, authorId=1166065221291926475, language=CN, stringName=丁一汇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= National Climate Center, China Meteorological Administration, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yihui Ding

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay "Exploring the Logic and Landscape of the Knowledge System"
    [Author(id=1166065409213521937, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836898380275946, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065409360322579, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836898380275946, authorId=1166065409213521937, language=EN, stringName=Augusta Maria Paci, firstName=Augusta Maria, middleName=null, lastName=Paci, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Sciences and Materials Technologies, National Research Council, Rome 00185, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065409465180180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836898380275946, authorId=1166065409213521937, language=CN, stringName=Augusta Maria Paci, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical Sciences and Materials Technologies, National Research Council, Rome 00185, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Augusta Maria Paci

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Green Processes: Transforming Waste into Valuable Resources
    [Author(id=1166065408664068104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836899718258923, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065408798285834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836899718258923, authorId=1166065408664068104, language=EN, stringName=Veena Sahajwalla, firstName=Veena, middleName=null, lastName=Sahajwalla, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Australian Research Council (ARC) Laureate Professor; Director of ARC Green Manufacturing Research Hub; Director of the Centre for Sustainable Materials Research and Technology (SMaRT) at UNSW Sydney, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065408903143435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836899718258923, authorId=1166065408664068104, language=CN, stringName=Veena Sahajwalla, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Australian Research Council (ARC) Laureate Professor; Director of ARC Green Manufacturing Research Hub; Director of the Centre for Sustainable Materials Research and Technology (SMaRT) at UNSW Sydney, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Veena Sahajwalla

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research Green Industrial Processes—Perspective
    Surface-Driven High-Pressure Processing
    [Author(id=1166065370248438563, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065370391044902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370248438563, language=EN, stringName=Keith E. Gubbins, firstName=Keith E., middleName=null, lastName=Gubbins, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065370500096808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370248438563, language=CN, stringName=Keith E. Gubbins, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065370609148715, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065370751755056, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370609148715, language=EN, stringName=Kai Gu, firstName=Kai, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemistry, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065370856612662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370609148715, language=CN, stringName=Kai Gu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemistry, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065370969858876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065371112465219, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370969858876, language=EN, stringName=Liangliang Huang, firstName=Liangliang, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065371217322821, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065370969858876, language=CN, stringName=Liangliang Huang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065371322180424, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065371468981067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065371322180424, language=EN, stringName=Yun Long, firstName=Yun, middleName=null, lastName=Long, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065371573838669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065371322180424, language=CN, stringName=Yun Long, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065371678696272, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065371825496915, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065371678696272, language=EN, stringName=J. Matthew Mansell, firstName=J. Matthew, middleName=null, lastName=Mansell, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065371942937428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065371678696272, language=CN, stringName=J. Matthew Mansell, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065372051989334, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065372194595672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372051989334, language=EN, stringName=Erik E. Santiso, firstName=Erik, middleName=null, lastName=E. Santiso, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065372303647577, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372051989334, language=CN, stringName=Erik E. Santiso, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065372412699483, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065372559500126, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372412699483, language=EN, stringName=Kaihang Shi, firstName=Kaihang, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065372672746335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372412699483, language=CN, stringName=Kaihang Shi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065372785992545, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065372928598883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372785992545, language=EN, stringName=Magorzata liwińska-Bartkowiak, firstName=Magorzata, middleName=null, lastName=liwińska-Bartkowiak, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań 61-614, Poland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065373037650788, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065372785992545, language=CN, stringName=Magorzata liwińska-Bartkowiak, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań 61-614, Poland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065373142508390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065373289309032, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065373142508390, language=EN, stringName=Deepti Srivastava, firstName=Deepti, middleName=null, lastName=Srivastava, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065373398360937, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836960539861303, authorId=1166065373142508390, language=CN, stringName=Deepti Srivastava, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Keith E. Gubbins , Kai Gu , Liangliang Huang , Yun Long , J. Matthew Mansell , Erik E. Santiso , Kaihang Shi , Magorzata liwińska-Bartkowiak , Deepti Srivastava

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Perspective
    A Perspective on Rheological Studies of Gas Hydrate Slurry Properties
    [Author(id=1166065730966970402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065731147325477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065730966970402, language=EN, stringName=Ahmad A.A. Majid, firstName=Ahmad A.A., middleName=null, lastName=Majid, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
    b  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pekan 26600, Malaysia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065731252183078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065730966970402, language=CN, stringName=Ahmad A.A. Majid, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
    b  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pekan 26600, Malaysia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065731361234984, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065731537395756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065731361234984, language=EN, stringName=David T. Wu, firstName=David, middleName=null, lastName=T. Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
    c  Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065731650641965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065731361234984, language=CN, stringName=David T. Wu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
    c  Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065731755499567, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065731885522993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065731755499567, language=EN, stringName=Carolyn A. Koh, firstName=Carolyn A., middleName=null, lastName=Koh, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065731990380594, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837283610321281, authorId=1166065731755499567, language=CN, stringName=Carolyn A. Koh, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Center for Hydrate Research, Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ahmad A.A. Majid , David T. Wu , Carolyn A. Koh

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Perspective
    Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks
    [Author(id=1166065239751057479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065239876886601, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, authorId=1166065239751057479, language=EN, stringName=Robert S. Weber, firstName=Robert S., middleName=null, lastName=Weber, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pacific Northwest National Laboratory, Richland, WA 99352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065239973355594, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, authorId=1166065239751057479, language=CN, stringName=Robert S. Weber, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pacific Northwest National Laboratory, Richland, WA 99352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065240065630284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065240191459406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, authorId=1166065240065630284, language=EN, stringName=Johnathan E. Holladay, firstName=Johnathan E., middleName=null, lastName=Holladay, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pacific Northwest National Laboratory, Richland, WA 99352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065240283734095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836973441540459, authorId=1166065240065630284, language=CN, stringName=Johnathan E. Holladay, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pacific Northwest National Laboratory, Richland, WA 99352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Robert S. Weber , Johnathan E. Holladay

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Perspective
    Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective
    [Author(id=1166065652780950114, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065652915167844, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, authorId=1166065652780950114, language=EN, stringName=Jennifer A. Clark, firstName=Jennifer A., middleName=null, lastName=Clark, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065653011636837, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, authorId=1166065652780950114, language=CN, stringName=Jennifer A. Clark, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065653112300135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065653242323561, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, authorId=1166065653112300135, language=EN, stringName=Erik E. Santiso, firstName=Erik E., middleName=null, lastName=Santiso, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065653342986858, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837213448003751, authorId=1166065653112300135, language=CN, stringName=Erik E. Santiso, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jennifer A. Clark , Erik E. Santiso

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Review
    New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems
    [Author(id=1166065895324967893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065895429825494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895324967893, language=EN, stringName=Zhuo Cheng, firstName=Zhuo, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a #, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065895526294487, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895324967893, language=CN, stringName=Zhuo Cheng, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a #, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065895626957785, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065895731815386, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895626957785, language=EN, stringName=Lang Qin, firstName=Lang, middleName=null, lastName=Qin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a #, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065895828284379, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895626957785, language=CN, stringName=Lang Qin, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a #, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065895933141981, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065896067359711, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895933141981, language=EN, stringName=Jonathan A. Fan, firstName=Jonathan A., middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065896163828704, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065895933141981, language=CN, stringName=Jonathan A. Fan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065896268686306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065896398709732, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065896268686306, language=EN, stringName=Liang-Shih Fan, firstName=Liang-Shih, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065896499373029, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837274596761924, authorId=1166065896268686306, language=CN, stringName=Liang-Shih Fan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zhuo Cheng , Lang Qin , Jonathan A. Fan , Liang-Shih Fan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Review
    Techno-Economic Challenges of Fuel Cell Commercialization
    [Author(id=1166065339919425951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065340053643681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065339919425951, language=EN, stringName=Junye Wang, firstName=Junye, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065340162695586, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065339919425951, language=CN, stringName=Junye Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065340263358884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065340401770918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065340263358884, language=EN, stringName=Hualin Wang, firstName=Hualin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065340510822823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065340263358884, language=CN, stringName=Hualin Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065340611486121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065340749898155, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065340611486121, language=EN, stringName=Yi Fan, firstName=Yi, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065340858950060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836946862235944, authorId=1166065340611486121, language=CN, stringName=Yi Fan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Junye Wang , Hualin Wang , Yi Fan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Review
    A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries
    [Author(id=1166065474632081629, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065474762105055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065474632081629, language=EN, stringName=Xiaohong Zheng, firstName=Xiaohong, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065474854379744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065474632081629, language=CN, stringName=郑晓洪, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065474950848738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065475076677860, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065474950848738, language=EN, stringName=Zewen Zhu, firstName=Zewen, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Taixing High School of Jiangsu Province, Taixing 225400, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065475168952549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065474950848738, language=CN, stringName=朱泽文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Taixing High School of Jiangsu Province, Taixing 225400, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065475265421543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065475391250665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475265421543, language=EN, stringName=Xiao Lin, firstName=Xiao, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065475483525354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475265421543, language=CN, stringName=林晓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065475579994348, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065475705823470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475579994348, language=EN, stringName=Yi Zhang, firstName=Yi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065475802292463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475579994348, language=CN, stringName=张懿, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065475894567153, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065476020396275, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475894567153, language=EN, stringName=Yi He, firstName=Yi, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People’s Republic of China, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065476116865268, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065475894567153, language=CN, stringName=何艺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People’s Republic of China, Beijing 100029, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065476209139958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065476339163384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065476209139958, language=EN, stringName=Hongbin Cao, firstName=Hongbin, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065476431438073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065476209139958, language=CN, stringName=曹宏斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065476527907067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065476653736189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065476527907067, language=EN, stringName=Zhi Sun, firstName=Zhi, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065476750205182, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837244792037577, authorId=1166065476527907067, language=CN, stringName=孙峙), firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiaohong Zheng , Zewen Zhu , Xiao Lin , Yi Zhang , Yi He , Hongbin Cao , Zhi Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Review
    Comparing End-Use Potential for Industrial Food-Waste Sources
    [Author(id=1166065327873384782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065328045351250, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065327873384782, language=EN, stringName=Raymond RedCorn, firstName=Raymond, middleName=null, lastName=RedCorn, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065328150208852, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065327873384782, language=CN, stringName=Raymond RedCorn, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065328255066455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065328422838620, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065328255066455, language=EN, stringName=Samira Fatemi, firstName=Samira, middleName=null, lastName=Fatemi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065328523501918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065328255066455, language=CN, stringName=Samira Fatemi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065328628359521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065328829686119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065328628359521, language=EN, stringName=Abigail S. Engelberth, firstName=Abigail S., middleName=null, lastName=Engelberth, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
    c  Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065328930349417, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836931108430093, authorId=1166065328628359521, language=CN, stringName=Abigail S. Engelberth, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a  Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, USA
    b  Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
    c  Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Raymond RedCorn , Samira Fatemi , Abigail S. Engelberth

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Review
    Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment
    [Author(id=1166065591980319184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065592127119826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, authorId=1166065591980319184, language=EN, stringName=Jian-guo Li, firstName=Jian-guo, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= BGRIMM Technology Group, Beijing 100160, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065592236171731, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, authorId=1166065591980319184, language=CN, stringName=李建国, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= BGRIMM Technology Group, Beijing 100160, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065592349417941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065592496218583, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, authorId=1166065592349417941, language=EN, stringName=Kai Zhan, firstName=Kai, middleName=null, lastName=Zhan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= BGRIMM Technology Group, Beijing 100160, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065592605270488, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837022418428477, authorId=1166065592349417941, language=CN, stringName=战凯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= BGRIMM Technology Group, Beijing 100160, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jian-guo Li , Kai Zhan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Article
    A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes
    [Author(id=1166065381707277257, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065381828912075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065381707277257, language=EN, stringName=Ning Duan, firstName=Ning, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065381929575372, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065381707277257, language=CN, stringName=段宁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065382021850062, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065382147679184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382021850062, language=EN, stringName=Linhua Jiang, firstName=Linhua, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065382244148177, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382021850062, language=CN, stringName=降林华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065382336422867, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065382466446293, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382336422867, language=EN, stringName=Fuyuan Xu, firstName=Fuyuan, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065382558720982, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382336422867, language=CN, stringName=徐夫元, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065382655189976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065382781019098, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382655189976, language=EN, stringName=Ge Zhang, firstName=Ge, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065382873293787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836975991677295, authorId=1166065382655189976, language=CN, stringName=张歌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Center for Heavy Metal Cleaner Production Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ning Duan , Linhua Jiang , Fuyuan Xu , Ge Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Article
    Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery
    [Author(id=1166065375432598413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065375571010447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065375432598413, language=EN, stringName=Steff Van Loy, firstName=Steff Van, middleName=null, lastName=Loy, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065375680062352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065375432598413, language=CN, stringName=Steff Van Loy, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065375784919954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065375923331988, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065375784919954, language=EN, stringName=Koen Binnemans, firstName=Koen, middleName=null, lastName=Binnemans, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065376028189589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065375784919954, language=CN, stringName=Koen Binnemans, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065376137241495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065376275653529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065376137241495, language=EN, stringName=Tom Van Gerven, firstName=Tom Van, middleName=null, lastName=Gerven, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065376384705434, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836969641501023, authorId=1166065376137241495, language=CN, stringName=Tom Van Gerven, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Chemical Engineering, KU Leuven, Heverlee B-3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Steff Van Loy , Koen Binnemans , Tom Van Gerven

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Article
    Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles
    [Author(id=1166065763279888644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065763414106374, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763279888644, language=EN, stringName=Hualin Wang, firstName=Hualin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065763510575367, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763279888644, language=CN, stringName=汪华林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065763615432969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065763749650699, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763615432969, language=EN, stringName=Pengbo Fu, firstName=Pengbo, middleName=null, lastName=Fu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065763850313996, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763615432969, language=CN, stringName=付鹏波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065763950977294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065764085195024, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763950977294, language=EN, stringName=Jianping Li, firstName=Jianping, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065764190052625, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065763950977294, language=CN, stringName=李剑平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065764290715923, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065764420739349, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764290715923, language=EN, stringName=Yuan Huang, firstName=Yuan, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065764525596950, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764290715923, language=CN, stringName=黄渊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065764622065944, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065764752089370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764622065944, language=EN, stringName=Ying Zhao, firstName=Ying, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065764856946971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764622065944, language=CN, stringName=赵颖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065764957610269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065765087633695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764957610269, language=EN, stringName=Lai Jiang, firstName=Lai, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Sinopec Jinling Petrochemical Corporation, Nanjing 210033, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065765192491296, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065764957610269, language=CN, stringName=姜来, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Sinopec Jinling Petrochemical Corporation, Nanjing 210033, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065765293154594, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065765423178020, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765293154594, language=EN, stringName=Xiangchen Fang, firstName=Xiangchen, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Fushun 113001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065765528035621, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765293154594, language=CN, stringName=方向晨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Fushun 113001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065765624504615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065765758722345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765624504615, language=EN, stringName=Tao Yang, firstName=Tao, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Fushun 113001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065765859385642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765624504615, language=CN, stringName=杨涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Fushun 113001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065765960048940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065766094266670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765960048940, language=EN, stringName=Zhaohui Huang, firstName=Zhaohui, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Sinopec Zhenhai Refining and Chemical Company, Ningbo 315207, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065766194929967, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065765960048940, language=CN, stringName=黄朝晖, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Sinopec Zhenhai Refining and Chemical Com, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065766295593265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065766429810995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065766295593265, language=EN, stringName=Cheng Huang, firstName=Cheng, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Sinopec Zhenhai Refining and Chemical Company, Ningbo 315207, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065766530474292, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837307656266230, authorId=1166065766295593265, language=CN, stringName=黄诚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e  Sinopec Zhenhai Refining and Chemical Com, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hualin Wang , Pengbo Fu , Jianping Li , Yuan Huang , Ying Zhao , Lai Jiang , Xiangchen Fang , Tao Yang , Zhaohui Huang , Cheng Huang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Article
    Industrial Application of a Deep Purification Technology for Flue Gas Involving Phase-Transition Agglomeration and Dehumidification
    [Author(id=1166065711497012106, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065711635424143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065711497012106, language=EN, stringName=Jianmin Liu, firstName=Jianmin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065711748670353, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065711497012106, language=CN, stringName=刘建民, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065711840945046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065711962579866, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065711840945046, language=EN, stringName=Fahua Zhu, firstName=Fahua, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065712059048861, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065711840945046, language=CN, stringName=朱法华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065712159712159, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065712289735586, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065712159712159, language=EN, stringName=Xiuyuan Ma, firstName=Xiuyuan, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065712390398884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837271501365546, authorId=1166065712159712159, language=CN, stringName=马修元, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Power Environmental Protection Research Institute, State Environmental Protection Key Lab for Air Physical Simulation & Pollution Control, Nanjing 210031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jianmin Liu , Fahua Zhu , Xiuyuan Ma

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Industrial Processes—Article
    Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization
    [Author(id=1166065705876644678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065706010862408, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, authorId=1166065705876644678, language=EN, stringName=Andrea Di Maria, firstName=Andrea Di, middleName=null, lastName=Maria, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065706111525705, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, authorId=1166065705876644678, language=CN, stringName=Andrea Di Maria, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065706212189003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065706346406733, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, authorId=1166065706212189003, language=EN, stringName=Karel Van Acker, firstName=Karel Van, middleName=null, lastName=Acker, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065706447070030, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159837267294478597, authorId=1166065706212189003, language=CN, stringName=Karel Van Acker, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Andrea Di Maria , Karel Van Acker

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.