2018-04-30 , Volume 4 Issue 2

Cover illustration

  •  

    Traditional urban design methods focus on the form-making process and lack performance dimensions. Thus, a new paradigm of urban systems design is required in order to address the challenges of climate change by taking the performance of urban systems into account. A multidisciplinary research team from the Georgia Institute of Technology, Tongji University, and Disney Research China has developed an extended geodesign method that emphasizes the links between systems thinking, digital technology, and geographic context. The method explores district-scale urban design in order to integrate systems of renewable energy production, energy consumption, and storm water management; it also provides a measurement of human experiences in cities. It incorporates a geographic information system (GIS), parametric modeling techniques, and multidisciplinary design optimization (MDO) tools that enable collaborative design decision-making. The method was refined through a test case, which helps to deepen the current understanding of the interdependence of urban systems.


  • Select all
    News & Highlights
  • News & Highlights
    The Longest Railway Tunnel in China
    [Author(id=1166065157857272653, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065157983101775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, authorId=1166065157857272653, language=EN, stringName=Haibo Zhang, firstName=Haibo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065158079570768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, authorId=1166065157857272653, language=CN, stringName=张海波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065158176039762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065158301868884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, authorId=1166065158176039762, language=EN, stringName=Changyu Yang, firstName=Changyu, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065158398337877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836530233631259, authorId=1166065158176039762, language=CN, stringName=杨昌宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Haibo Zhang , Changyu Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    The Undersea Tunnel on Qingdao Metro Line 8
    [Author(id=1166064878374019186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064878512431221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, authorId=1166064878374019186, language=EN, stringName=Weiguo He, firstName=Weiguo, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Liuyuan Group Co., Ltd., Tianjin 300133, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064878617288824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, authorId=1166064878374019186, language=CN, stringName=贺维国, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Liuyuan Group Co., Ltd., Tianjin 300133, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064878717952126, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064878856364161, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, authorId=1166064878717952126, language=EN, stringName=Peng Liu, firstName=Peng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Liuyuan Group Co., Ltd., Tianjin 300133, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064878965416069, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836529382187546, authorId=1166064878717952126, language=CN, stringName=刘鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= China Railway Liuyuan Group Co., Ltd., Tianjin 300133, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Weiguo He , Peng Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Breaking the Silos of Discipline for Integrated Student Learning: A Global STEM Course’s Curriculum Development
    [Author(id=1166064590091117538, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836228369572576, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064590225335268, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836228369572576, authorId=1166064590091117538, language=EN, stringName=Katherine Shirey, firstName=Katherine, middleName=null, lastName=Shirey, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Knowles Teacher Initiative, Moorestown, NJ 08057, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064590325998566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836228369572576, authorId=1166064590091117538, language=CN, stringName=Katherine Shirey, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Knowles Teacher Initiative, Moorestown, NJ 08057, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Katherine Shirey

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    The Three ‘‘As” of the Naples Metro System
    [Author(id=1166064986285072852, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836623724667670, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064986419290582, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836623724667670, authorId=1166064986285072852, language=EN, stringName=Antonello De Risi, firstName=Antonello De, middleName=null, lastName=Risi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= MN Metropolitana di Napoli S.p.A., Naples 80142, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064986519953879, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836623724667670, authorId=1166064986285072852, language=CN, stringName=Antonello De Risi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= MN Metropolitana di Napoli S.p.A., Naples 80142, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Antonello De Risi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    What Are the Best Infrastructure Investments to Make? Is It Based on Economics, or Resilience, or Both?
    [Author(id=1166065128870437635, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836515079610893, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065128992072453, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836515079610893, authorId=1166065128870437635, language=EN, stringName=David Singleton AM, firstName=David Singleton, middleName=null, lastName=AM, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chairman, Infrastructure Sustainability Council of Australia; Chairman, Swinburne University's Smart Cities Research Institute Advisory Board, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065129092735750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836515079610893, authorId=1166065128870437635, language=CN, stringName=David Singleton AM, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Chairman, Infrastructure Sustainability Council of Australia; Chairman, Swinburne University's Smart Cities Research Institute Advisory Board, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] David Singleton AM

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research
    A Geodesign Method of Human-Energy-Water Interactive Systems for Urban Infrastructure Design: 10KM2 Near-Zero District Project in Shanghai
    [Author(id=1166064732055724644, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064732219302505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732055724644, language=EN, stringName=Perry Pei-Ju Yang, firstName=Perry Pei-Ju, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064732319965803, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732055724644, language=CN, stringName=Perry Pei-Ju Yang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064732420629102, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064732554846833, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732420629102, language=EN, stringName=Cheryl Shu-Fang Chi, firstName=Cheryl, middleName=null, lastName=Shu-Fang Chi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Disney Research China, Shanghai 200021, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064732651315827, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732420629102, language=CN, stringName=Cheryl Shu-Fang Chi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  Disney Research China, Shanghai 200021, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064732747784822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064732911362681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732747784822, language=EN, stringName=Yihan Wu, firstName=Yihan, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064733012025979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064732747784822, language=CN, stringName=Yihan Wu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064733108494974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064733305627266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064733108494974, language=EN, stringName=Steven Jige Quan, firstName=Steven Jige, middleName=null, lastName=Quan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    d  Graduate School of Environmental Studies, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064733410484868, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836553512018499, authorId=1166064733108494974, language=CN, stringName=Steven Jige Quan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=a  Eco-Urban Lab, School of City and Regional Planning & School of Architecture, College of Design, Georgia Institute of Technology, Atlanta, GA 30332-0155, USA
    b  Eco-Urban Lab, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    d  Graduate School of Environmental Studies, Seoul National University, Seoul 08826, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Perry Pei-Ju Yang , Cheryl Shu-Fang Chi , Yihan Wu , Steven Jige Quan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Scheme for a Sustainable Urban Water Environmental System During the Urbanization Process in China
    [Author(id=1166064890608804076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064890738827503, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064890608804076, language=EN, stringName=Huibin Yu, firstName=Huibin, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064890860462321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064890608804076, language=CN, stringName=于会彬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064890965319924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064891107926263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064890965319924, language=EN, stringName=Yonghui Song, firstName=Yonghui, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064891221172473, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064890965319924, language=CN, stringName=宋永会, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064891326030076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064891510579457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064891326030076, language=EN, stringName=Xin Chang, firstName=Xin, middleName=null, lastName=Chang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b  School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064891615437059, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064891326030076, language=CN, stringName=常昕, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    b  School of Environment, Beijing Normal University, Beijing 100875, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064891728683270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064891867095305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064891728683270, language=EN, stringName=Hongjie Gao, firstName=Hongjie, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064891976147211, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064891728683270, language=CN, stringName=高红杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064892085199118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064892227805458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064892085199118, language=EN, stringName=Jianfeng Peng, firstName=Jianfeng, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064892332663060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836534071419421, authorId=1166064892085199118, language=CN, stringName=彭剑峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Huibin Yu , Yonghui Song , Xin Chang , Hongjie Gao , Jianfeng Peng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Impact of Low-Impact Development Technologies from an Ecological Perspective in Different Residential Zones of the City of Atlanta, Georgia
    [Author(id=1166064745016124100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064745158730438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745016124100, language=EN, stringName=Zackery B. Morris, firstName=Zackery B., middleName=null, lastName=Morris, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064745271976647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745016124100, language=CN, stringName=Zackery B. Morris, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064745381028553, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064745523634891, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745381028553, language=EN, stringName=Stephen M. Malone, firstName=Stephen M., middleName=null, lastName=Malone, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064745632686796, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745381028553, language=CN, stringName=Stephen M. Malone, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064745741738702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064745884345040, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745741738702, language=EN, stringName=Abigail R. Cohen, firstName=Abigail R., middleName=null, lastName=Cohen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064745997591249, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064745741738702, language=CN, stringName=Abigail R. Cohen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064746106643155, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064746249249493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064746106643155, language=EN, stringName=Marc J. Weissburg, firstName=Marc J., middleName=null, lastName=Weissburg, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064746358301398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064746106643155, language=CN, stringName=Marc J. Weissburg, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064746463159000, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064746609959642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064746463159000, language=EN, stringName=Bert Bras, firstName=Bert, middleName=null, lastName=Bras, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064746719011547, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266076365578, authorId=1166064746463159000, language=CN, stringName=Bert Bras, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Zackery B. Morris , Stephen M. Malone , Abigail R. Cohen , Marc J. Weissburg , Bert Bras

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Project-Based Sustainability Rating Tool for Pavement Maintenance
    [Author(id=1166064623842681085, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064623964315903, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, authorId=1166064623842681085, language=EN, stringName=Yibo Zhang, firstName=Yibo, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Louisville, Louisville, KY 40208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064624060784896, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, authorId=1166064623842681085, language=CN, stringName=Yibo Zhang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Louisville, Louisville, KY 40208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064624161448194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064624283083012, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, authorId=1166064624161448194, language=EN, stringName=J.P. Mohsen, firstName=J.P., middleName=null, lastName=Mohsen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Louisville, Louisville, KY 40208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064624379552005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836257889084160, authorId=1166064624161448194, language=CN, stringName=J.P. Mohsen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Louisville, Louisville, KY 40208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yibo Zhang , J.P. Mohsen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Industrial Ecosystems and Food Webs: An Ecological-Based Mass Flow Analysis to Model the Progress of Steel Manufacturing in China
    [Author(id=1166064820907859995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064821042077725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064820907859995, language=EN, stringName=Stephen M. Malone, firstName=Stephen M., middleName=null, lastName=Malone, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064821146935326, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064820907859995, language=CN, stringName=Stephen M. Malone, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064821243404320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064821377622050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064821243404320, language=EN, stringName=Marc J. Weissburg, firstName=Marc J., middleName=null, lastName=Weissburg, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064821482479651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064821243404320, language=CN, stringName=Marc J. Weissburg, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064821583142949, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064821717360679, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064821583142949, language=EN, stringName=Bert Bras, firstName=Bert, middleName=null, lastName=Bras, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064821818023976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836362549551160, authorId=1166064821583142949, language=CN, stringName=Bert Bras, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Stephen M. Malone , Marc J. Weissburg , Bert Bras

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Understanding Infrastructure Resiliency in Chennai, India Using Twitter’s Geotags and Texts: A Preliminary Study
    [Author(id=1166064901602074939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064901740486973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064901602074939, language=EN, stringName=Wai K. Chong, firstName=Wai K., middleName=null, lastName=Chong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Del E. Webb School of Construction, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064901836955966, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064901602074939, language=CN, stringName=Wai K. Chong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Del E. Webb School of Construction, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064901937619264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064902071836994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064901937619264, language=EN, stringName=Hariharan Naganathan, firstName=Hariharan, middleName=null, lastName=Naganathan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Technology and Construction Management, Missouri State University, Springfield, MO 65897, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064902172500291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064901937619264, language=CN, stringName=Hariharan Naganathan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Department of Technology and Construction Management, Missouri State University, Springfield, MO 65897, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064902273163589, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064902407381319, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902273163589, language=EN, stringName=Huan Liu, firstName=Huan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  School of Computing, Informatics and Decision Science Engineering, Arizona State University, Tempe, AZ 85287, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064902503850312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902273163589, language=CN, stringName=Huan Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  School of Computing, Informatics and Decision Science Engineering, Arizona State University, Tempe, AZ 85287, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064902604513610, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064902738731340, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902604513610, language=EN, stringName=Samuel Ariaratnam, firstName=Samuel, middleName=null, lastName=Ariaratnam, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Del E. Webb School of Construction, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064902835200333, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902604513610, language=CN, stringName=Samuel Ariaratnam, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Del E. Webb School of Construction, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064902940057935, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064903074275665, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902940057935, language=EN, stringName=Joonhoon Kim, firstName=Joonhoon, middleName=null, lastName=Kim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Civil Engineering, Construction Management Technology, Oklahoma State University, Stillwater, OK 74078, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064903170744658, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836544246800949, authorId=1166064902940057935, language=CN, stringName=Joonhoon Kim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Department of Civil Engineering, Construction Management Technology, Oklahoma State University, Stillwater, OK 74078, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wai K. Chong , Hariharan Naganathan , Huan Liu , Samuel Ariaratnam , Joonhoon Kim

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Estimation of the Impact of Traveler Information Apps on Urban Air Quality Improvement
    [Author(id=1166064630515818791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064630675202346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, authorId=1166064630515818791, language=EN, stringName=Wenke Huang, firstName=Wenke, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aDepartment of Transportation Engineering, Shenzhen University, Shenzhen 518000, China
    bShenzhen Nanshan Urban Planning and Land Resource Research Center, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064630767477035, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, authorId=1166064630515818791, language=CN, stringName=黄文柯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064630863946029, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=humw@szu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166064630989775151, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, authorId=1166064630863946029, language=EN, stringName=Mingwei Hu, firstName=Mingwei, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aDepartment of Transportation Engineering, Shenzhen University, Shenzhen 518000, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064631082049840, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836266583876363, authorId=1166064630863946029, language=CN, stringName=胡明伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wenke Huang , Mingwei Hu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A GIS-Based Evaluation of Environmental Sensitivity for an Urban Expressway in Shenzhen, China
    [Author(id=1166064603873599528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064604045565995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064603873599528, language=EN, stringName=Qian Li, firstName=Qian, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aState Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
    bGuangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064604146229294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064603873599528, language=CN, stringName=李骐安, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064604255281200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064604427247667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064604255281200, language=EN, stringName=Fengqing Guo, firstName=Fengqing, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=aState Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
    cCollege of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064604527910964, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064604255281200, language=CN, stringName=郭凤清, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064604632768566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=guanyt@tsinghua.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166064604804735033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064604632768566, language=EN, stringName=Yuntao Guan, firstName=Yuntao, middleName=null, lastName=Guan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=aState Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
    bGuangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064604905398330, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836245281006328, authorId=1166064604632768566, language=CN, stringName=关云涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Qian Li , Fengqing Guo , Yuntao Guan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    The Ceneri Base Tunnel: Construction Experience with the Southern Portion of the Flat Railway Line Crossing the Swiss Alps
    [Author(id=1166065103247434458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065103385846492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103247434458, language=EN, stringName=Davide Merlini *, firstName=Davide Merlini, middleName=null, lastName=*, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065103486509789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103247434458, language=CN, stringName=Davide Merlini *, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065103582978783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065103721390817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103582978783, language=EN, stringName=Daniele Stocker, firstName=Daniele, middleName=null, lastName=Stocker, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065103817859810, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103582978783, language=CN, stringName=Daniele Stocker, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065103922717412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065104052740838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103922717412, language=EN, stringName=Matteo Falanesca, firstName=Matteo, middleName=null, lastName=Falanesca, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065104149209831, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065103922717412, language=CN, stringName=Matteo Falanesca, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166065104254067433, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166065104384090859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065104254067433, language=EN, stringName=Roberto Schuerch, firstName=Roberto, middleName=null, lastName=Schuerch, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166065104480559852, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836683791295441, authorId=1166065104254067433, language=CN, stringName=Roberto Schuerch, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Pini Swiss Engineers, Lugano 6900, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Davide Merlini * , Daniele Stocker , Matteo Falanesca , Roberto Schuerch

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Long Undersea Tunnels: Recognizing and Overcoming the Logistics of Operation and Construction
    [Author(id=1166064611725336725, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064611867943065, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, authorId=1166064611725336725, language=EN, stringName=Gareth Mainwaring, firstName=Gareth, middleName=null, lastName=Mainwaring, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Mott MacDonald, Croydon CR0 2EE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064611976994970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, authorId=1166064611725336725, language=CN, stringName=Gareth Mainwaring, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Mott MacDonald, Croydon CR0 2EE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064612081852573, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064612224458915, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, authorId=1166064612081852573, language=EN, stringName=Tor Ole Olsen, firstName=Tor Ole, middleName=null, lastName=Olsen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Dr.techn.Olav Olsen AS, Lysaker 1325, Norway, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064612333510825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836233130107619, authorId=1166064612081852573, language=CN, stringName=Tor Ole Olsen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Dr.techn.Olav Olsen AS, Lysaker 1325, Norway, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Gareth Mainwaring , Tor Ole Olsen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Key Techniques for the Construction of High-Speed Railway Large-Section Loess Tunnels
    [Author(id=1166064336071483531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064336214089869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336071483531, language=EN, stringName=Yong Zhao, firstName=Yong, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Railway Economic and Planning Research Institute, Beijing 100038, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064336323141774, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336071483531, language=CN, stringName=赵勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064336427999376, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064336608354450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336427999376, language=EN, stringName=Huawu He, firstName=Huawu, middleName=null, lastName=He, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bChina Railway Corporation, Beijing 100844, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064336742572179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336427999376, language=CN, stringName=何华武, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064336847429781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=lpf@bjut.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166064336990036119, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336847429781, language=EN, stringName=Pengfei Li, firstName=Pengfei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=cBeijing University of Technology, Beijing 100124, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064337094893720, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835814207218335, authorId=1166064336847429781, language=CN, stringName=李鹏飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, *, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yong Zhao , Huawu He , Pengfei Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Upper Lillooet River Hydroelectric Project: The Challenges of Constructing a Power Tunnel for Run-of-River Hydro Projects in Mountainous British Columbia
    [Author(id=1166064391662789066, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064391792812492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064391662789066, language=EN, stringName=Nichole Boultbee, firstName=Nichole, middleName=null, lastName=Boultbee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Golder Associates Ltd., Squamish, British Columbia V8B 0B4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064391889281485, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064391662789066, language=CN, stringName=Nichole Boultbee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a  Golder Associates Ltd., Squamish, British Columbia V8B 0B4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064391981556175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064392111579602, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064391981556175, language=EN, stringName=Oliver Robson, firstName=Oliver, middleName=null, lastName=Robson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Innergex Renewable Energy Inc., Vancouver, British Columbia V6E 4E6, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064392212242899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064391981556175, language=CN, stringName=Oliver Robson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b  Innergex Renewable Energy Inc., Vancouver, British Columbia V6E 4E6, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064392321294805, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064392455512535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064392321294805, language=EN, stringName=Serge Moalli, firstName=Serge, middleName=null, lastName=Moalli, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  EBC Inc., North Vancouver, British Columbia V7L 0B5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064392560370137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064392321294805, language=CN, stringName=Serge Moalli, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c  EBC Inc., North Vancouver, British Columbia V7L 0B5, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064392665227739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064392807834081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064392665227739, language=EN, stringName=Rich Humphries, firstName=Rich, middleName=null, lastName=Humphries, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Golder Associates Ltd., Squamish, British Columbia V8B 0B4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064392908497382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835842367775462, authorId=1166064392665227739, language=CN, stringName=Rich Humphries, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d  Golder Associates Ltd., Squamish, British Columbia V8B 0B4, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Nichole Boultbee , Oliver Robson , Serge Moalli , Rich Humphries

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Forms and Aesthetics of Bridges
    [Author(id=1166064402198880813, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836308224926569, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=mtang@tylin.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166064402404401713, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836308224926569, authorId=1166064402198880813, language=EN, stringName=Man-Chung Tang, firstName=Man-Chung, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=aChinese Academy of Engineering, Beijing 100088, China
    bUS National Academy of Engineering, Washington, DC 20001, USA
    cT.Y. Lin International Group, San Francisco, CA 94104, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064402505065010, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836308224926569, authorId=1166064402198880813, language=CN, stringName=邓文中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Man-Chung Tang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures
    [Author(id=1166064525075211145, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064525213623179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525075211145, language=EN, stringName=Shutian Liu, firstName=Shutian, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064525318480780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525075211145, language=CN, stringName=刘书田, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064525423338382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064525565944720, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525423338382, language=EN, stringName=Quhao Li, firstName=Quhao, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064525670802321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525423338382, language=CN, stringName=李取浩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064525775659923, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064525918266261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525775659923, language=EN, stringName=Junhuan Liu, firstName=Junhuan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064526018929558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064525775659923, language=CN, stringName=刘君欢, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064526127981464, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064526266393498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064526127981464, language=EN, stringName=Wenjiong Chen, firstName=Wenjiong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064526371251099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064526127981464, language=CN, stringName=陈文炯, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064526480303005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064526618715039, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064526480303005, language=EN, stringName=Yongcun Zhang, firstName=Yongcun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064526723572640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159835951495176242, authorId=1166064526480303005, language=CN, stringName=张永存, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shutian Liu , Quhao Li , Junhuan Liu , Wenjiong Chen , Yongcun Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Biocompatibility Pathways in Tissue-Engineering Templates
    [Author(id=1166064678653845945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836223911027423, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064678788063675, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836223911027423, authorId=1166064678653845945, language=EN, stringName=David F. Williams, firstName=David F., middleName=null, lastName=Williams, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064678888726972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836223911027423, authorId=1166064678653845945, language=CN, stringName=David F. Williams, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] David F. Williams

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
    Design and Occupant-Protection Performance Analysis of a New Tubular Driver Airbag
    [Author(id=1166064768537780999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064768663610121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064768537780999, language=EN, stringName=Huajian Zhou, firstName=Huajian, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aDepartment of Automotive Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064768755884810, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064768537780999, language=CN, stringName=周华健, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064768852353804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166064769003348751, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064768852353804, language=EN, stringName=Zhihua Zhong, firstName=Zhihua, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aDepartment of Automotive Engineering, Tsinghua University, Beijing 100084, China
    bTongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064769099817744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064768852353804, language=CN, stringName=钟志华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166064769196286738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=manjiang_h@vip.163.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166064769317921556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064769196286738, language=EN, stringName=Manjiang Hu, firstName=Manjiang, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aDepartment of Automotive Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166064769414390549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159836325002142649, authorId=1166064769196286738, language=CN, stringName=胡满江, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Huajian Zhou , Zhihua Zhong , Manjiang Hu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.