2019-08-26 , Volume 5 Issue 4

Cover illustration

  •  

    An intelligent manufacturing system is a composite intelligent system comprising humans, cyber systems, and physical systems with the aim of achieving specific manufacturing goals at an optimized level. This kind of intelligent system is called a human–cyber–physical system (HCPS). HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing. The essence of intelligent manufacturing is to design, construct, and apply HCPSs in various cases and at different levels. This issue reviews the evolutionary footprint of intelligent manufacturing from the perspective of HCPSs, and discusses in depth the implications, characteristics, technical frame, and key technologies of HCPSs for new-generation intelligent manufacturing (NGIM).

    Download cover

  • Select all
    Editorial
  • RESEARCH ARTICLE
    Editorial for the Special Issue on Intelligent Manufacturing
    [Author(id=1166136420810285221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136420940308647, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136420810285221, language=EN, stringName=Peigen Li, firstName=Peigen, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136421036777640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136420810285221, language=CN, stringName=李培根, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136421141635242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136421271658668, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421141635242, language=EN, stringName=Vladimir Marik, firstName=Vladimir, middleName=null, lastName=Marik, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136421372321965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421141635242, language=CN, stringName=Vladimir Marik, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague 16000, Czech Republic, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136421472985263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136421607202993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421472985263, language=EN, stringName=Liang Gao, firstName=Liang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136421707866290, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421472985263, language=CN, stringName=高亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136421808529588, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136421938553014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421808529588, language=EN, stringName=Weiming Shen, firstName=Weiming, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136422043410615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946843691999430, authorId=1166136421808529588, language=CN, stringName=Weiming Shen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Peigen Li , Vladimir Marik , Liang Gao , Weiming Shen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Editorial for Additive Manufacturing
    [Author(id=1166136419820429464, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845340360909, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136419937869978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845340360909, authorId=1166136419820429464, language=EN, stringName=Bingheng Lu, firstName=Bingheng, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136420025950363, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946845340360909, authorId=1166136419820429464, language=CN, stringName=卢秉恒, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Xi'an Jiaotong University, Xi'an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Bingheng Lu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • RESEARCH ARTICLE
    A Chinese Lander Explores the Far Side of the Moon
    [Author(id=1166138248255955179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952580619068251, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138248390172909, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952580619068251, authorId=1166138248255955179, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138248490836207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952580619068251, authorId=1166138248255955179, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Climate Change: Losing Ground?
    [Author(id=1166136939448557704, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952625921745765, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136939574386826, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952625921745765, authorId=1166136939448557704, language=EN, stringName=Emma Hiolski, firstName=Emma, middleName=null, lastName=Hiolski, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136939670855819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952625921745765, authorId=1166136939448557704, language=CN, stringName=Emma Hiolski, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Emma Hiolski

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    A Smart Pill for Insulin?
    [Author(id=1166138253133930764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952618376192867, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138253268148494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952618376192867, authorId=1166138253133930764, language=EN, stringName=Elizabeth K. Wilson, firstName=Elizabeth K., middleName=null, lastName=Wilson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138253373006095, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952618376192867, authorId=1166138253133930764, language=CN, stringName=Elizabeth K. Wilson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Elizabeth K. Wilson

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Anatomy of a Tailings Dam Failure and a Caution for the Future
    [Author(id=1166138249623298302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952585694176092, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138249757516032, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952585694176092, authorId=1166138249623298302, language=EN, stringName=Jane Palmer, firstName=Jane, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138249866567937, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952585694176092, authorId=1166138249623298302, language=CN, stringName=Jane Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jane Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Space Trash Removal
    [Author(id=1166138256912998682, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952631009436520, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138257038827804, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952631009436520, authorId=1166138256912998682, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138257131102493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952631009436520, authorId=1166138256912998682, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • RESEARCH ARTICLE
    Thoughts on Design for Intelligent Manufacturing
    [Author(id=1166138461460816605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952727453262754, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138461632783072, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952727453262754, authorId=1166138461460816605, language=EN, stringName=David W. Rosen, firstName=David W., middleName=null, lastName=Rosen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138461733446369, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952727453262754, authorId=1166138461460816605, language=CN, stringName=David W. Rosen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
    b Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 487372, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    David W. Rosen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    From Intelligence Science to Intelligent Manufacturing
    [Author(id=1166136149124243672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946938902700288, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136149237489882, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946938902700288, authorId=1166136149124243672, language=EN, stringName=Lihui Wang, firstName=Lihui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136149317181659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159946938902700288, authorId=1166136149124243672, language=CN, stringName=Lihui Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= KTH Royal Institute of Technology, Stockholm 10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lihui Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • RESEARCH ARTICLE
    New Trends in Intelligent Manufacturing
    [Author(id=1166136917243912253, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136917365547071, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917243912253, language=EN, stringName=Liang Gao, firstName=Liang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136917462016064, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917243912253, language=CN, stringName=高亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136917571067970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136917696897092, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917571067970, language=EN, stringName=Weiming Shen, firstName=Weiming, middleName=null, lastName=Shen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b National Research Council, Ottawa, ON K1A 0R6, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136917797560389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917571067970, language=CN, stringName=Weiming Shen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b National Research Council, Ottawa, ON K1A 0R6, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136917889835079, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136918028247113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917889835079, language=EN, stringName=Xinyu Li, firstName=Xinyu, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136918128910410, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952549170176857, authorId=1166136917889835079, language=CN, stringName=李新宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Liang Gao , Weiming Shen , Xinyu Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    An Industry 4.0 Approach to the 3D Printing of Composite Materials
    [Author(id=1166138799664325294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138799806931632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, authorId=1166138799664325294, language=EN, stringName=Bronwyn Fox, firstName=Bronwyn, middleName=null, lastName=Fox, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Swinburne Research, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138799911789233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, authorId=1166138799664325294, language=CN, stringName=Bronwyn Fox, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Swinburne Research, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138800020841139, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138800155058869, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, authorId=1166138800020841139, language=EN, stringName=Aleksander Subic, firstName=Aleksander, middleName=null, lastName=Subic, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Swinburne Research, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138800259916470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952636432671597, authorId=1166138800020841139, language=CN, stringName=Aleksander Subic, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Swinburne Research, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Bronwyn Fox , Aleksander Subic

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • RESEARCH ARTICLE
    Human–Cyber–Physical Systems (HCPSs) in the Context of New-Generation Intelligent Manufacturing
    [Author(id=1166138373661450769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138373791474195, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138373661450769, language=EN, stringName=Zhou Ji, firstName=Zhou, middleName=null, lastName=Ji, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138373879554580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138373661450769, language=CN, stringName=周济, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138373971829270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138374097658392, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138373971829270, language=EN, stringName=Zhou Yanhong, firstName=Zhou, middleName=null, lastName=Yanhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138374189933081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138373971829270, language=CN, stringName=周艳红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138374286402075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138374437397022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138374286402075, language=EN, stringName=Wang Baicun, firstName=Wang, middleName=null, lastName=Baicun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Tsinghua University, Beijing 100084, China
    d University of Michigan, Ann Arbor, MI 48109, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138374525477407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138374286402075, language=CN, stringName=王柏村, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, d, address=c Tsinghua University, Beijing 100084, China
    d University of Michigan, Ann Arbor, MI 48109, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138374621946401, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138374743581219, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138374621946401, language=EN, stringName=Zang Jiyuan, firstName=Zang, middleName=null, lastName=Jiyuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138374840050212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953269789352108, authorId=1166138374621946401, language=CN, stringName=臧冀原, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zhou Ji , Zhou Yanhong , Wang Baicun , Zang Jiyuan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Biologically Inspired Design of Context-Aware Smart Products
    [Author(id=1166136205999006060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136206145806702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136205999006060, language=EN, stringName=Ang Liu, firstName=Ang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW 2033, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136206259052911, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136205999006060, language=CN, stringName=Ang Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW 2033, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136206372299121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136206514905459, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136206372299121, language=EN, stringName=Ivan Teo, firstName=Ivan, middleName=null, lastName=Teo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW 2033, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136206623957364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136206372299121, language=CN, stringName=Ivan Teo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW 2033, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136206737203574, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136206879809912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136206737203574, language=EN, stringName=Diandi Chen, firstName=Diandi, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Beijing University of Posts & Telecommunications, Beijing 100876, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136206993056121, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136206737203574, language=CN, stringName=陈点滴, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Beijing University of Posts & Telecommunications, Beijing 100876, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136207097913723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136207248908669, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207097913723, language=EN, stringName=Stephen Lu, firstName=Stephen, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Industrial and System Engineering, University of Southern California, Los Angeles, CA 90089, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136207362154878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207097913723, language=CN, stringName=Stephen Lu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Industrial and System Engineering, University of Southern California, Los Angeles, CA 90089, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136207467012480, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136207609618818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207467012480, language=EN, stringName=Thorsten Wuest, firstName=Thorsten, middleName=null, lastName=Wuest, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136207710282115, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207467012480, language=CN, stringName=Thorsten Wuest, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136207815139717, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136207957746055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207815139717, language=EN, stringName=Zhinan Zhang, firstName=Zhinan, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136208062603656, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136207815139717, language=CN, stringName=张执南, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136208163266954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136208310067596, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136208163266954, language=EN, stringName=Fei Tao, firstName=Fei, middleName=null, lastName=Tao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Automation Science and Electrial Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136208410730893, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947272773493191, authorId=1166136208163266954, language=CN, stringName=陶飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f School of Automation Science and Electrial Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ang Liu , Ivan Teo , Diandi Chen , Stephen Lu , Thorsten Wuest , Zhinan Zhang , Fei Tao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Data-Driven Anomaly Diagnosis for Machining Processes
    [Author(id=1166136067415007243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136067557613581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136067415007243, language=EN, stringName=Y.C. Liang, firstName=Y.C., middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136067666665486, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136067415007243, language=CN, stringName=Y.C. Liang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136067775717392, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136067918323730, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136067775717392, language=EN, stringName=S. Wang, firstName=S., middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136068023181331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136067775717392, language=CN, stringName=S. Wang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136068132233237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136068312588312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136068132233237, language=EN, stringName=W.D. Li, firstName=W.D., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK
    b School of Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136068417445913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136068132233237, language=CN, stringName=W.D. Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK
    b School of Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136068526497819, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136068673298461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136068526497819, language=EN, stringName=X. Lu, firstName=X., middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136068782350366, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948138016464947, authorId=1166136068526497819, language=CN, stringName=X. Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Y.C. Liang , S. Wang , W.D. Li , X. Lu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison
    [Author(id=1166135893590466673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135893712101491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135893590466673, language=EN, stringName=Fei Tao, firstName=Fei, middleName=null, lastName=Tao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135893795987572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135893590466673, language=CN, stringName=陶飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135893884067958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135893997314168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135893884067958, language=EN, stringName=Qinglin Qi, firstName=Qinglin, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135894089588857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135893884067958, language=CN, stringName=戚庆林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135894173474939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135894282526845, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135894173474939, language=EN, stringName=Lihui Wang, firstName=Lihui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135894370607230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135894173474939, language=CN, stringName=王力翚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Production Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135894467076224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135894588711046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135894467076224, language=EN, stringName=A.Y.C. Nee, firstName=A.Y.C., middleName=null, lastName=Nee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135894672597127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947112941150552, authorId=1166135894467076224, language=CN, stringName=A.Y.C. Nee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Fei Tao , Qinglin Qi , Lihui Wang , A.Y.C. Nee

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Fog-IBDIS: Industrial Big Data Integration and Sharing with Fog Computing for Manufacturing Systems
    [Author(id=1166138493354304344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138493484327770, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138493354304344, language=EN, stringName=Junliang Wang, firstName=Junliang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138493589185371, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138493354304344, language=CN, stringName=汪俊亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138493694042973, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138493836649311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138493694042973, language=EN, stringName=Peng Zheng, firstName=Peng, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200040, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138493958284128, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138493694042973, language=CN, stringName=郑鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200040, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138494058947426, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138494201553764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494058947426, language=EN, stringName=Youlong Lv, firstName=Youlong, middleName=null, lastName=Lv, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138494302217061, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494058947426, language=CN, stringName=吕佑龙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138494407074663, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138494549681001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494407074663, language=EN, stringName=Jingsong Bao, firstName=Jingsong, middleName=null, lastName=Bao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138494671315818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494407074663, language=CN, stringName=鲍劲松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138494776173420, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138494914585454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494776173420, language=EN, stringName=Jie Zhang, firstName=Jie, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138495015248751, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159952884324426714, authorId=1166138494776173420, language=CN, stringName=张洁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Mechanical Engineering, Donghua University, Shanghai 201620, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Junliang Wang , Peng Zheng , Youlong Lv , Jingsong Bao , Jie Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Online Monitoring of Welding Status Based on a DBN Model During Laser Welding
    [Author(id=1166136884578672645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136884683530247, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136884578672645, language=EN, stringName=Yanxi Zhang, firstName=Yanxi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136884767416328, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136884578672645, language=CN, stringName=张艳喜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136884851302410, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136884960354316, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136884851302410, language=EN, stringName=Deyong You, firstName=Deyong, middleName=null, lastName=You, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136885044240397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136884851302410, language=CN, stringName=游德勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136885128126479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136885237178385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136885128126479, language=EN, stringName=Xiangdong Gao, firstName=Xiangdong, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136885329453074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136885128126479, language=CN, stringName=高向东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136885425922068, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136885560139798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136885425922068, language=EN, stringName=Seiji Katayama, firstName=Seiji, middleName=null, lastName=Katayama, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136885664997399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159949194553253942, authorId=1166136885425922068, language=CN, stringName=Seiji Katayama, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yanxi Zhang , Deyong You , Xiangdong Gao , Seiji Katayama

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Toward Intelligent Machine Tool
    [Author(id=1166138567446683651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138567572512773, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138567446683651, language=EN, stringName=Jihong Chen, firstName=Jihong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, #, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138567664787462, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138567446683651, language=CN, stringName=陈吉红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, #, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138567761256456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138567882891274, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138567761256456, language=EN, stringName=Pengcheng Hu, firstName=Pengcheng, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a,a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138567975165963, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138567761256456, language=CN, stringName=胡鹏程, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a,a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138568071634957, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138568193269775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568071634957, language=EN, stringName=Huicheng Zhou, firstName=Huicheng, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138568289738768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568071634957, language=CN, stringName=周会成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138568382013458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138568503648276, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568382013458, language=EN, stringName=Jianzhong Yang, firstName=Jianzhong, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138568600117269, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568382013458, language=CN, stringName=杨建中, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138568692391959, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138568822415385, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568692391959, language=EN, stringName=Jiejun Xie, firstName=Jiejun, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138568914690074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138568692391959, language=CN, stringName=谢杰君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138569006964764, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138569132793886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569006964764, language=EN, stringName=Yakun Jiang, firstName=Yakun, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138569225068575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569006964764, language=CN, stringName=蒋亚坤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138569321537569, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138569443172387, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569321537569, language=EN, stringName=Zhiqiang Gao, firstName=Zhiqiang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138569531252772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569321537569, language=CN, stringName=高志强, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138569627721766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138569753550888, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569627721766, language=EN, stringName=Chenglei Zhang, firstName=Chenglei, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138569845825577, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953355357348049, authorId=1166138569627721766, language=CN, stringName=张成磊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jihong Chen , Pengcheng Hu , Huicheng Zhou , Jianzhong Yang , Jiejun Xie , Yakun Jiang , Zhiqiang Gao , Chenglei Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Upgrading Pathways of Intelligent Manufacturing in China: Transitioning across Technological Paradigms
    [Author(id=1166138903091667524, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138903217496646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903091667524, language=EN, stringName=Yuan Zhou, firstName=Yuan, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138903309771335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903091667524, language=CN, stringName=周源, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138903402046025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138903553040972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903402046025, language=EN, stringName=Jiyuan Zang, firstName=Jiyuan, middleName=null, lastName=Zang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China
    b Center for Strategic Studies, Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138903649509965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903402046025, language=CN, stringName=臧冀原, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China
    b Center for Strategic Studies, Chinese Academy of Engineering, Beijing 100088, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138903741784655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138903867613777, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903741784655, language=EN, stringName=Zhongzhen Miao, firstName=Zhongzhen, middleName=null, lastName=Miao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138903959888466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138903741784655, language=CN, stringName=苗仲桢, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Public Policy and Management, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138904052163156, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138904177992278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138904052163156, language=EN, stringName=Tim Minshall, firstName=Tim, middleName=null, lastName=Minshall, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138904270266967, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953168266223756, authorId=1166138904052163156, language=CN, stringName=Tim Minshall, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yuan Zhou , Jiyuan Zang , Zhongzhen Miao , Tim Minshall

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives
    [Author(id=1166136607318401712, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136607452619442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607318401712, language=EN, stringName=Balasubramanian Nagarajan, firstName=Balasubramanian, middleName=null, lastName=Nagarajan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136607553282739, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607318401712, language=CN, stringName=Balasubramanian Nagarajan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136607649751733, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136607783969463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607649751733, language=EN, stringName=Zhiheng Hu, firstName=Zhiheng, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136607880438456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607649751733, language=CN, stringName=Zhiheng Hu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136607981101754, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136608111125180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607981101754, language=EN, stringName=Xu Song, firstName=Xu, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136608207594173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136607981101754, language=CN, stringName=Xu Song, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136608308257471, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136608438280897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136608308257471, language=EN, stringName=Wei Zhai, firstName=Wei, middleName=null, lastName=Zhai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136608538944194, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136608308257471, language=CN, stringName=Wei Zhai, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136608639607492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136608769630918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136608639607492, language=EN, stringName=Jun Wei, firstName=Jun, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136608870294215, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947702639321687, authorId=1166136608639607492, language=CN, stringName=Jun Wei, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Balasubramanian Nagarajan , Zhiheng Hu , Xu Song , Wei Zhai , Jun Wei

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives
    [Author(id=1166136574971928974, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136575080980883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136574971928974, language=EN, stringName=Xinbo Qi, firstName=Xinbo, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136575160672662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136574971928974, language=CN, stringName=亓欣波, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136575244558746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136575349416348, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575244558746, language=EN, stringName=Guofeng Chen, firstName=Guofeng, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136575429108125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575244558746, language=CN, stringName=陈国锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136575533965727, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136575638823329, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575533965727, language=EN, stringName=Yong Li, firstName=Yong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136575718515106, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575533965727, language=CN, stringName=李勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136575802401188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136575907258790, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575802401188, language=EN, stringName=Xuan Cheng, firstName=Xuan, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136575991144871, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136575802401188, language=CN, stringName=程宣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136576066642345, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136576184082859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136576066642345, language=EN, stringName=Changpeng Li, firstName=Changpeng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136576276357548, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953506775916783, authorId=1166136576066642345, language=CN, stringName=李长鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Corporate Technology, Siemens Ltd., China, Beijing 100102, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xinbo Qi , Guofeng Chen , Yong Li , Xuan Cheng , Changpeng Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map
    [Author(id=1166136261800026666, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136261934244396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136261800026666, language=EN, stringName=Zhengtao Gan, firstName=Zhengtao, middleName=null, lastName=Gan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136262034907693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136261800026666, language=CN, stringName=甘政涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136262139765295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136262273983025, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262139765295, language=EN, stringName=Hengyang Li, firstName=Hengyang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136262374646322, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262139765295, language=CN, stringName=李恒阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136262479503924, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136262613721654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262479503924, language=EN, stringName=Sarah J. Wolff, firstName=Sarah, middleName=null, lastName=J. Wolff, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136262714384951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262479503924, language=CN, stringName=Sarah J. Wolff, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136262815048249, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136262982820412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262815048249, language=EN, stringName=Jennifer L. Bennett, firstName=Jennifer, middleName=null, lastName=L. Bennett, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
    b DMG MORI, Hoffman Estates, IL 60192, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136263079289405, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136262815048249, language=CN, stringName=Jennifer L. Bennett, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
    b DMG MORI, Hoffman Estates, IL 60192, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136263184147007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136263314170433, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263184147007, language=EN, stringName=Gregory Hyatt, firstName=Gregory, middleName=null, lastName=Hyatt, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b DMG MORI, Hoffman Estates, IL 60192, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136263410639426, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263184147007, language=CN, stringName=Gregory Hyatt, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b DMG MORI, Hoffman Estates, IL 60192, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136263515497028, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136263645520454, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263515497028, language=EN, stringName=Gregory J. Wagner, firstName=Gregory, middleName=null, lastName=J. Wagner, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136263746183751, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263515497028, language=CN, stringName=Gregory J. Wagner, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136263846847049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136264002036299, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263846847049, language=EN, stringName=Jian Cao, firstName=Jian, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136264102699596, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136263846847049, language=CN, stringName=曹简, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136264203362894, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136264333386320, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136264203362894, language=EN, stringName=Wing Kam Liu, firstName=Wing, middleName=null, lastName=Kam Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136264434049617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947606195495469, authorId=1166136264203362894, language=CN, stringName=Wing Kam Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zhengtao Gan , Hengyang Li , Sarah J. Wolff , Jennifer L. Bennett , Gregory Hyatt , Gregory J. Wagner , Jian Cao , Wing Kam Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Influence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder during Selective Laser Melting
    [Author(id=1166138731896955379, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138732060533238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138731896955379, language=EN, stringName=Jiayao Zhang, firstName=Jiayao, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138732173779447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138731896955379, language=CN, stringName=章佳窈, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138732270248441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138732433826300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732270248441, language=EN, stringName=Dongdong Gu, firstName=Dongdong, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138732538683901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732270248441, language=CN, stringName=顾冬冬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138732635152895, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138732798730754, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732635152895, language=EN, stringName=Ying Yang, firstName=Ying, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138732899394051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732635152895, language=CN, stringName=杨莹, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138732995863045, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138733155246600, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732995863045, language=EN, stringName=Hongmei Zhang, firstName=Hongmei, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138733255909897, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138732995863045, language=CN, stringName=张红梅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138733352378891, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138733515956750, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138733352378891, language=EN, stringName=Hongyu Chen, firstName=Hongyu, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138733616620047, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138733352378891, language=CN, stringName=陈洪宇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138733713089041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138733876666900, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138733713089041, language=EN, stringName=Donghuai Dai, firstName=Donghuai, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138733977330197, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138733713089041, language=CN, stringName=戴冬华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138734077993495, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138734241571354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138734077993495, language=EN, stringName=Kaijie Lin, firstName=Kaijie, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138734338040347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562448679248, authorId=1166138734077993495, language=CN, stringName=林开杰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    b Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jiayao Zhang , Dongdong Gu , Ying Yang , Hongmei Zhang , Hongyu Chen , Donghuai Dai , Kaijie Lin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Data Mining for Mesoscopic Simulation of Electron Beam Selective Melting
    [Author(id=1166137114523001136, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166137114682384691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137114523001136, language=EN, stringName=Ya Qian, firstName=Ya, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166137114778853684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137114523001136, language=CN, stringName=钱亚, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166137114871128374, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166137114996957496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137114871128374, language=EN, stringName=Wentao Yan, firstName=Wentao, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166137115093426489, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137114871128374, language=CN, stringName=闫文韬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166137115189895483, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166137115345084734, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137115189895483, language=EN, stringName=Feng Lin, firstName=Feng, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166137115454136639, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159953703430054314, authorId=1166137115189895483, language=CN, stringName=林峰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
    b Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ya Qian , Wentao Yan , Feng Lin

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    MoS2/ZIF-8 Hybrid Materials for Environmental Catalysis: Solar-Driven Antibiotic-Degradation Engineering
    [Author(id=1166135324385665217, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166135324524077254, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324385665217, language=EN, stringName=Wen-Qian Chen, firstName=Wen-Qian, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, *, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    c Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 201800, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135324599574728, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324385665217, language=CN, stringName=陈文倩, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, *, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    c Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 201800, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135324683460809, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166135324813484238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324683460809, language=EN, stringName=Linyue Li, firstName=Linyue, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135324893176016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324683460809, language=CN, stringName=李琳悦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135324972867795, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135325077725398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324972867795, language=EN, stringName=Lin Li, firstName=Lin, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135325161611480, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135324972867795, language=CN, stringName=李林, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135325241303259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135325375520992, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325241303259, language=EN, stringName=Wen-Hui Qiu, firstName=Wen-Hui, middleName=null, lastName=Qiu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, e, address=d Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering,
    e State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135325455212768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325241303259, language=CN, stringName=裘文慧, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, e, address=d Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering,
    e State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135325539098850, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135325673316581, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325539098850, language=EN, stringName=Liang Tang, firstName=Liang, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135325757202662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325539098850, language=CN, stringName=唐量, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135325836894441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135325945946347, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325836894441, language=EN, stringName=Ling Xu, firstName=Ling, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135326029832428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135325836894441, language=CN, stringName=徐玲, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135326105329902, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135326214381808, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135326105329902, language=EN, stringName=Kejun Xu, firstName=Kejun, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135326289879281, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135326105329902, language=CN, stringName=许科军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135326373765363, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135326503788790, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135326373765363, language=EN, stringName=Ming-Hong Wu, firstName=Ming-Hong, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135326587674871, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947993350726497, authorId=1166135326373765363, language=CN, stringName=吴明红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wen-Qian Chen , Linyue Li , Lin Li , Wen-Hui Qiu , Liang Tang , Ling Xu , Kejun Xu , Ming-Hong Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Whole-Process Pollution Control for Cost-Effective and Cleaner Chemical Production—A Case Study of the Tungsten Industry in China
    [Author(id=1166135336100356396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135336209408302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336100356396, language=EN, stringName=Hongbin Cao, firstName=Hongbin, middleName=null, lastName=Cao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135336293294383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336100356396, language=CN, stringName=曹宏斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135336377180465, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135336482038067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336377180465, language=EN, stringName=He Zhao, firstName=He, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135336565924148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336377180465, language=CN, stringName=赵赫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135336645615926, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135336754667832, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336645615926, language=EN, stringName=Di Zhang, firstName=Di, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135336838553913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336645615926, language=CN, stringName=张笛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135336918245691, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135337027297597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336918245691, language=EN, stringName=Chenming Liu, firstName=Chenming, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135337111183678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135336918245691, language=CN, stringName=刘晨明, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135337190875456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135337299927362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337190875456, language=EN, stringName=Xiao Lin, firstName=Xiao, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135337379619139, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337190875456, language=CN, stringName=林晓, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135337467699525, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135337572557127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337467699525, language=EN, stringName=Yuping Li, firstName=Yuping, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135337656443208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337467699525, language=CN, stringName=李玉平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135337740329290, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135337849381196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337740329290, language=EN, stringName=Pengge Ning, firstName=Pengge, middleName=null, lastName=Ning, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135337933267277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135337740329290, language=CN, stringName=宁朋歌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135338012959055, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135338122010961, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338012959055, language=EN, stringName=Jiajun Sun, firstName=Jiajun, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135338201702738, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338012959055, language=CN, stringName=孙家君, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135338285588820, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135338390446422, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338285588820, language=EN, stringName=Yi Zhang, firstName=Yi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135338470138199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338285588820, language=CN, stringName=张懿, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135338549829977, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135338658881883, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338549829977, language=EN, stringName=Zhi Sun, firstName=Zhi, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135338738573660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948085172428820, authorId=1166135338549829977, language=CN, stringName=孙峙, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Beijing Engineering Research Center of Process Pollution Control and National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hongbin Cao , He Zhao , Di Zhang , Chenming Liu , Xiao Lin , Yuping Li , Pengge Ning , Jiajun Sun , Yi Zhang , Zhi Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs
    [Author(id=1166135242768704288, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166135242907116323, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135242768704288, language=EN, stringName=Bin Zhang, firstName=Bin, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135242995196708, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135242768704288, language=CN, stringName=张斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135243095860006, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166135243263632169, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243095860006, language=EN, stringName=Lei Gao, firstName=Lei, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135243364295466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243095860006, language=CN, stringName=高磊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135243460764460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135243624342319, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243460764460, language=EN, stringName=Liang Ma, firstName=Liang, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135243729199920, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243460764460, language=CN, stringName=马梁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135243829863218, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135243993441077, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243829863218, language=EN, stringName=Yichen Luo, firstName=Yichen, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135244094104374, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135243829863218, language=CN, stringName=罗熠晨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135244194767672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135244358345531, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135244194767672, language=EN, stringName=Huayong Yang, firstName=Huayong, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135244463203132, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135244194767672, language=CN, stringName=杨华勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
    b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166135244563866430, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166135244693889856, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135244563866430, language=EN, stringName=Zhanfeng Cui, firstName=Zhanfeng, middleName=null, lastName=Cui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166135244798747457, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159947411181330937, authorId=1166135244563866430, language=CN, stringName=Zhanfeng Cui, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Bin Zhang , Lei Gao , Liang Ma , Yichen Luo , Huayong Yang , Zhanfeng Cui

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
    [Author(id=1166138742420464231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138742550487657, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138742420464231, language=EN, stringName=Wei Li, firstName=Wei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138742651150954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138742420464231, language=CN, stringName=李伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138742747619948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138742881837678, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138742747619948, language=EN, stringName=Siqi Chen, firstName=Siqi, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138742982500975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138742747619948, language=CN, stringName=陈思琦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138743083164273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138743217382003, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743083164273, language=EN, stringName=Xiongbin Peng, firstName=Xiongbin, middleName=null, lastName=Peng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138743318045300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743083164273, language=CN, stringName=彭雄斌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138743418708598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138743557120632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743418708598, language=EN, stringName=Mi Xiao, firstName=Mi, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138743661978233, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743418708598, language=CN, stringName=肖蜜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138743766835835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138743901053565, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743766835835, language=EN, stringName=Liang Gao, firstName=Liang, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138744001716862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138743766835835, language=CN, stringName=高亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138744110768768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138744244986498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138744110768768, language=EN, stringName=Akhil Garg, firstName=Akhil, middleName=null, lastName=Garg, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138744345649795, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138744110768768, language=CN, stringName=Akhil Garg, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166138744450507397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166138744584725127, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138744450507397, language=EN, stringName=Nengsheng Bao, firstName=Nengsheng, middleName=null, lastName=Bao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166138744681194120, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159954562897469779, authorId=1166138744450507397, language=CN, stringName=包能胜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Ministry of Education Key Lab of Mechatronic Systems Intelligent Integration Technology, Shantou University, Shantou 515063, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Wei Li , Siqi Chen , Xiongbin Peng , Mi Xiao , Liang Gao , Akhil Garg , Nengsheng Bao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Developing a Transformation-Independent and Unbiased qPCR Assay to Rapidly Evaluate the Determinants of DNA Assembly Efficiency
    [Author(id=1166136372668063823, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166136372806475857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136372668063823, language=EN, stringName=Xiaoyan Ma, firstName=Xiaoyan, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136372953276498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136372668063823, language=CN, stringName=马晓焉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136373062328404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166136373200740438, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136373062328404, language=EN, stringName=Xinxin Liang, firstName=Xinxin, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136373305598039, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136373062328404, language=CN, stringName=梁昕鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166136373410455641, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166136373599199324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136373410455641, language=EN, stringName=Yi-Xin Huo, firstName=Yi-Xin, middleName=null, lastName=Huo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
    b  UCLA Institute for Technology Advancement (Suzhou), Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166136373704056925, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159948201400787095, authorId=1166136373410455641, language=CN, stringName=霍毅欣, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
    b  UCLA Institute for Technology Advancement (Suzhou), Suzhou 215123, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xiaoyan Ma , Xinxin Liang , Yi-Xin Huo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • RESEARCH ARTICLE
    Corrigendum to ‘‘Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine” [Engineering 5 (2019) 40–49]
    []

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.