2019-06-21 , Volume 5 Issue 3

Cover illustration

  •  

    Life is ubiquitous on our planet, from the surface waters to the deepest oceanic trench, and from the soils to the rocks of Earth's crust. The total biomass of so-called "deep life" on Earth exceeds that of all other plants and animals on the planet's surface. The deepest life on Earth has been found at about 5 km below the terrestrial subsurface and at about 10.5 km below the ocean's surface. Deep life grows in dark and energetically challenging conditions, and has evolved uniquely for millions of years. Thus far, Earth's deep life has remained enigmatic; its exploration will inspire new insights into the origin of life and the conditions for planetary habitability.

    Download cover

  • Select all
    Editorial
  • Editorial
    Editorial for the Special Issue on Deep Matter & Energy
    [Author(id=1166071988323279736, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071988491051898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, authorId=1166071988323279736, language=EN, stringName=Ho-Kwang Mao, firstName=Ho-Kwang, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071988616881019, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, authorId=1166071988323279736, language=CN, stringName=毛河光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071988742710141, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071988906287999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, authorId=1166071988742710141, language=EN, stringName=Chengwei Sun, firstName=Chengwei, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Academy of Engineering Physics (CAEP), Mianyang 621900, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071989027922817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401961435723, authorId=1166071988742710141, language=CN, stringName=孙承纬, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Academy of Engineering Physics (CAEP), Mianyang 621900, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ho-Kwang Mao , Chengwei Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Editorial
    Editorial for the Special Issue on Engines and Fuels
    [Author(id=1166071990667895695, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071990806307729, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, authorId=1166071990667895695, language=EN, stringName=Wanhua Su, firstName=Wanhua, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071990906971026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, authorId=1166071990667895695, language=CN, stringName=苏万华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071991016022932, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071991192183703, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, authorId=1166071991016022932, language=EN, stringName=Gautam Kalghatgi, firstName=Gautam, middleName=null, lastName=Kalghatgi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Imperial College London, London SW7 2AZ, UK
    c University of Oxford, Oxford OX1 2JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071991292847000, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842401583948360, authorId=1166071991016022932, language=CN, stringName=Gautam Kalghatgi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=b Imperial College London, London SW7 2AZ, UK
    c University of Oxford, Oxford OX1 2JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wanhua Su , Gautam Kalghatgi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • News & Highlights
    Quantum Cryptography via Satellite
    [Author(id=1166071939619021509, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058695402344, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071939744850632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058695402344, authorId=1166071939619021509, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071939845513931, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058695402344, authorId=1166071939619021509, language=CN, stringName=Mitch Leslie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    A New Lander on Mars
    [Author(id=1166071942118826724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842057772655461, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071942307570406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842057772655461, authorId=1166071942118826724, language=EN, stringName=Marcus Woo, firstName=Marcus, middleName=null, lastName=Woo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071942416622311, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842057772655461, authorId=1166071942118826724, language=CN, stringName=Marcus Woo, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Marcus Woo

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    More Super Supercomputers
    [Author(id=1166071940155892437, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058380829543, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071940281721560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058380829543, authorId=1166071940155892437, language=EN, stringName=Jane Palmer, firstName=Jane, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071940378190553, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058380829543, authorId=1166071940155892437, language=CN, stringName=Jane Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jane Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Wearable Sweat Sensors
    [Author(id=1166071939916817101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842400359211591, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071940063617747, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842400359211591, authorId=1166071939916817101, language=EN, stringName=Elizabeth K. Wilson, firstName=Elizabeth K., middleName=null, lastName=Wilson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071940181058262, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842400359211591, authorId=1166071939916817101, language=CN, stringName=Elizabeth K. Wilson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Elizabeth K. Wilson

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
    Redefining the Kilogram
    [Author(id=1166071945663013616, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842064085082995, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071945830785778, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842064085082995, authorId=1166071945663013616, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071945956614899, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842064085082995, authorId=1166071945663013616, language=CN, stringName=Chris Palmer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Optically Digitalized Holography: A Perspective for All-Optical Machine Learning
    [Author(id=1166071797541167125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071797683773464, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071797541167125, language=EN, stringName=Min Gu, firstName=Min, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071797792825370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071797541167125, language=CN, stringName=Min Gu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071797906071580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071798086426657, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071797906071580, language=EN, stringName=Xinyuan Fang, firstName=Xinyuan, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
    b National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071798195478563, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071797906071580, language=CN, stringName=Xinyuan Fang, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
    b National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071798304530470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071798451331113, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071798304530470, language=EN, stringName=Haoran Ren, firstName=Haoran, middleName=null, lastName=Ren, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich 80539, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071798556188715, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071798304530470, language=CN, stringName=Haoran Ren, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich 80539, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071798665240622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071798812041266, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071798665240622, language=EN, stringName=Elena Goi, firstName=Elena, middleName=null, lastName=Goi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071798916898868, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842058099811174, authorId=1166071798665240622, language=CN, stringName=Elena Goi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Min Gu , Xinyuan Fang , Haoran Ren , Elena Goi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    New Developments in the Calorimetry of High-Temperature Materials
    [Author(id=1166071228172787930, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614023680695, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071228298617052, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614023680695, authorId=1166071228172787930, language=EN, stringName=Alexandra Navrotsky, firstName=Alexandra, middleName=null, lastName=Navrotsky, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Peter A. Rock Thermochemistry Laboratory & NEAT ORU, University of California, Davis, CA 95616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071228441223389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614023680695, authorId=1166071228172787930, language=CN, stringName=Alexandra Navrotsky, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Peter A. Rock Thermochemistry Laboratory & NEAT ORU, University of California, Davis, CA 95616, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Alexandra Navrotsky

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    The Deep Carbon Observatory: A Ten-Year Quest to Study Carbon in Earth
    [Author(id=1166071810006638697, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071810153439340, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810006638697, language=EN, stringName=Craig M. Schiffries, firstName=Craig M., middleName=null, lastName=Schiffries, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071810262491246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810006638697, language=CN, stringName=Craig M. Schiffries, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071810371543153, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071810522538100, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810371543153, language=EN, stringName=Andrea Johnson Mangum, firstName=Andrea Johnson, middleName=null, lastName=Mangum, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071810631590006, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810371543153, language=CN, stringName=Andrea Johnson Mangum, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071810740641913, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071810883248252, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810740641913, language=EN, stringName=Jennifer L. Mays, firstName=Jennifer L., middleName=null, lastName=Mays, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071810996494461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071810740641913, language=CN, stringName=Jennifer L. Mays, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071811105546368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071811252347011, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071811105546368, language=EN, stringName=Michelle Hoon-Starr, firstName=Michelle, middleName=null, lastName=Hoon-Starr, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071811365593221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071811105546368, language=CN, stringName=Michelle Hoon-Starr, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071811474645128, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071811621445771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071811474645128, language=EN, stringName=Robert M. Hazen, firstName=Robert M., middleName=null, lastName=Hazen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071811734691980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842061606249325, authorId=1166071811474645128, language=CN, stringName=Robert M. Hazen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Craig M. Schiffries , Andrea Johnson Mangum , Jennifer L. Mays , Michelle Hoon-Starr , Robert M. Hazen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering Achievements
  • Engineering Achievements
    Risk, Contract Management, and Financing of the Gotthard Base Tunnel in Switzerland
    [Author(id=1166071820131688606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842077347472282, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071820295266464, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842077347472282, authorId=1166071820131688606, language=EN, stringName=Davide Fabbri, firstName=Davide, middleName=null, lastName=Fabbri, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Lombardi Engineering Ltd., Minusio 6648, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071820421095585, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842077347472282, authorId=1166071820131688606, language=CN, stringName=Davide Fabbri, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Lombardi Engineering Ltd., Minusio 6648, Switzerland, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Davide Fabbri

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Engineering Achievements
    Challenges and Development Prospects of Ultra-Long and Ultra-Deep Mountain Tunnels
    [Author(id=1166072020799774755, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166072020938186789, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072020799774755, language=EN, stringName=Hehua Zhu, firstName=Hehua, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Civil Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166072021047238694, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072020799774755, language=CN, stringName=朱合华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a College of Civil Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166072021160484904, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166072021298896938, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072021160484904, language=EN, stringName=Jinxiu Yan, firstName=Jinxiu, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Railway Academy Co., Ltd., Chengdu 611731, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166072021407948843, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072021160484904, language=CN, stringName=严金秀, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b China Railway Academy Co., Ltd., Chengdu 611731, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166072021512806445, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166072021647024175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072021512806445, language=EN, stringName=Wenhao Liang, firstName=Wenhao, middleName=null, lastName=Liang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c China Railway Construction Co., Ltd., Beijing 100855, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166072021756076080, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842434077221504, authorId=1166072021512806445, language=CN, stringName=梁文灏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c China Railway Construction Co., Ltd., Beijing 100855, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hehua Zhu , Jinxiu Yan , Wenhao Liang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Deep Volatiles as the Key for Energy and Environments of the Four-Dimensional Earth System
    [Author(id=1166071972108100376, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071972238123802, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, authorId=1166071972108100376, language=EN, stringName=Ho-Kwang Mao, firstName=Ho-Kwang, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071972359758620, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, authorId=1166071972108100376, language=CN, stringName=毛河光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071972485587743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071972644971298, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, authorId=1166071972485587743, language=EN, stringName=Craig M. Schiffries, firstName=Craig, middleName=null, lastName=M. Schiffries, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071972766606116, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842395196023365, authorId=1166071972485587743, language=CN, stringName=Craig M. Schiffries, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ho-Kwang Mao , Craig M. Schiffries

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
    Prospects of Reciprocating Engines and Fuels
    [Author(id=1166071773168067444, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842052420723555, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071773335839606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842052420723555, authorId=1166071773168067444, language=EN, stringName=Michael J. Brear, firstName=Michael J., middleName=null, lastName=Brear, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Melbourne, Parkville 3010, Australi, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071773461668727, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842052420723555, authorId=1166071773168067444, language=CN, stringName=Michael J. Brear, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, The University of Melbourne, Parkville 3010, Australi, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Michael J. Brear

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research Deep Matter & Energy—Review
    Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization
    [Author(id=1166071885403447753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071885567025611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071885403447753, language=EN, stringName=Robert M. Hazen, firstName=Robert, middleName=null, lastName=M. Hazen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071885671883212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071885403447753, language=CN, stringName=Robert M. Hazen, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071885780935118, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071885919347152, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071885780935118, language=EN, stringName=Robert T. Downs, firstName=Robert, middleName=null, lastName=T. Downs, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071886024204753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071885780935118, language=CN, stringName=Robert T. Downs, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071886129062355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071886267474389, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886129062355, language=EN, stringName=Ahmed Eleish, firstName=Ahmed, middleName=null, lastName=Eleish, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071886372331990, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886129062355, language=CN, stringName=Ahmed Eleish, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071886477189592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071886619795930, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886477189592, language=EN, stringName=Peter Fox, firstName=Peter, middleName=null, lastName=Fox, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071886720459227, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886477189592, language=CN, stringName=Peter Fox, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071886829511133, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071886967923167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886829511133, language=EN, stringName=Olivier C. Gagné, firstName=Olivier, middleName=null, lastName=C. Gagné, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071887072780768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071886829511133, language=CN, stringName=Olivier C. Gagné, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071887177638370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071887316050404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887177638370, language=EN, stringName=Joshua J. Golden, firstName=Joshua, middleName=null, lastName=J. Golden, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071887420908005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887177638370, language=CN, stringName=Joshua J. Golden, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071887529959911, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071887668371945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887529959911, language=EN, stringName=Edward S. Grew, firstName=Edward, middleName=null, lastName=S. Grew, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071887769035242, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887529959911, language=CN, stringName=Edward S. Grew, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071887878087148, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071888012304878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887878087148, language=EN, stringName=Daniel R. Hummer, firstName=Daniel, middleName=null, lastName=R. Hummer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071888121356783, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071887878087148, language=CN, stringName=Daniel R. Hummer, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=e Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071888230408689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071888368820723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888230408689, language=EN, stringName=Grethe Hystad, firstName=Grethe, middleName=null, lastName=Hystad, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Mathematics, Statistics, and Computer Science, Purdue University Northwest, Hammond, IN 46323-2094, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071888473678324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888230408689, language=CN, stringName=Grethe Hystad, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, address=f Mathematics, Statistics, and Computer Science, Purdue University Northwest, Hammond, IN 46323-2094, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071888582730230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071888721142264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888582730230, language=EN, stringName=Sergey V. Krivovichev, firstName=Sergey, middleName=null, lastName=V. Krivovichev, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g Kola Science Centre of the Russian Academy of Sciences, Apatity, Murmansk Region 184209, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071888825999865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888582730230, language=CN, stringName=Sergey V. Krivovichev, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=g, address=g Kola Science Centre of the Russian Academy of Sciences, Apatity, Murmansk Region 184209, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071888930857467, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071889069269501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888930857467, language=EN, stringName=Congrui Li, firstName=Congrui, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071889195098622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071888930857467, language=CN, stringName=Congrui Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071889304150528, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=11, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071889442562562, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071889304150528, language=EN, stringName=Chao Liu, firstName=Chao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071889543225859, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071889304150528, language=CN, stringName=Chao Liu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071889652277765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=12, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071889790689799, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071889652277765, language=EN, stringName=Xiaogang Ma, firstName=Xiaogang, middleName=null, lastName=Ma, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Department of Computer Science, University of Idaho, Moscow, ID 83844-1010, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071889895547400, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071889652277765, language=CN, stringName=Xiaogang Ma, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=h, address=h Department of Computer Science, University of Idaho, Moscow, ID 83844-1010, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071890000405002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=13, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071890138817036, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890000405002, language=EN, stringName=Shaunna M. Morrison, firstName=Shaunna, middleName=null, lastName=M. Morrison, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071890243674637, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890000405002, language=CN, stringName=Shaunna M. Morrison, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071890352726543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=14, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071890486944273, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890352726543, language=EN, stringName=Feifei Pan, firstName=Feifei, middleName=null, lastName=Pan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071890591801874, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890352726543, language=CN, stringName=Feifei Pan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071890700853780, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=15, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071890839265814, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890700853780, language=EN, stringName=Alexander J. Pires, firstName=Alexander, middleName=null, lastName=J. Pires, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071890944123415, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071890700853780, language=CN, stringName=Alexander J. Pires, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071891053175321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=16, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071891191587355, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891053175321, language=EN, stringName=Anirudh Prabhu, firstName=Anirudh, middleName=null, lastName=Prabhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071891296444956, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891053175321, language=CN, stringName=Anirudh Prabhu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071891405496862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=17, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071891539714592, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891405496862, language=EN, stringName=Jolyon Ralph, firstName=Jolyon, middleName=null, lastName=Ralph, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=i, address=i Mindat.org, Mitcham CR4 4FD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071891644572193, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891405496862, language=CN, stringName=Jolyon Ralph, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=i, address=i Mindat.org, Mitcham CR4 4FD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071891753624099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=18, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071891925590566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891753624099, language=EN, stringName=Simone E. Runyon, firstName=Simone, middleName=null, lastName=E. Runyon, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, j, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
    j Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071-2000, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071892030448167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071891753624099, language=CN, stringName=Simone E. Runyon, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, j, address=a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
    j Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071-2000, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071892135305769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, orderNo=19, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071892277912107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071892135305769, language=EN, stringName=Hao Zhong, firstName=Hao, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071892378575404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842135027540064, authorId=1166071892135305769, language=CN, stringName=Hao Zhong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Robert M. Hazen , Robert T. Downs , Ahmed Eleish , Peter Fox , Olivier C. Gagné , Joshua J. Golden , Edward S. Grew , Daniel R. Hummer , Grethe Hystad , Sergey V. Krivovichev , Congrui Li , Chao Liu , Xiaogang Ma , Shaunna M. Morrison , Feifei Pan , Alexander J. Pires , Anirudh Prabhu , Jolyon Ralph , Simone E. Runyon , Hao Zhong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle
    [Author(id=1166071022844830522, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071022974853948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, authorId=1166071022844830522, language=EN, stringName=Dongyang Lian, firstName=Dongyang, middleName=null, lastName=Lian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071023071322941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, authorId=1166071022844830522, language=CN, stringName=连东洋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071023176180543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071023339758402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, authorId=1166071023176180543, language=EN, stringName=Jingsui Yang, firstName=Jingsui, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
    b CARMA, Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071023436227395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841176314503767, authorId=1166071023176180543, language=CN, stringName=杨经绥, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
    b CARMA, Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Dongyang Lian , Jingsui Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions
    [Author(id=1166071151719014511, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841864327160303, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071151895175282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841864327160303, authorId=1166071151719014511, language=EN, stringName=John S. Tse, firstName=John, middleName=null, lastName=S. Tse, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
    b Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071152004227187, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841864327160303, authorId=1166071151719014511, language=CN, stringName=John S. Tse, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
    b Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    John S. Tse

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils
    [Author(id=1166071269188886921, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071269323104651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269188886921, language=EN, stringName=Takayuki Ishii, firstName=Takayuki, middleName=null, lastName=Ishii, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071269423767948, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269188886921, language=CN, stringName=Takayuki Ishii, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071269524431246, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071269688009105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269524431246, language=EN, stringName=Zhaodong Liu, firstName=Zhaodong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
    b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071269788672402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269524431246, language=CN, stringName=刘兆东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
    b State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071269885141396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071270048719255, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269885141396, language=EN, stringName=Tomoo Katsura, firstName=Tomoo, middleName=null, lastName=Katsura, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
    c Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071270149382552, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841645057336023, authorId=1166071269885141396, language=CN, stringName=Tomoo Katsura, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
    c Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Takayuki Ishii , Zhaodong Liu , Tomoo Katsura

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior
    [Author(id=1166071513037332805, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071513221882184, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513037332805, language=EN, stringName=Li Zhang, firstName=Li, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071513343517002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513037332805, language=CN, stringName=张莉, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071513473540428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071513637118286, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513473540428, language=EN, stringName=Hongsheng Yuan, firstName=Hongsheng, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071513762947407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513473540428, language=CN, stringName=苑洪胜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071513993634129, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071514157211987, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513993634129, language=EN, stringName=Yue Meng, firstName=Yue, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071514287235412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071513993634129, language=CN, stringName=孟悦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071514408870230, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071514622779737, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071514408870230, language=EN, stringName=Ho-kwang Mao, firstName=Ho-kwang, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
    c Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071514744414554, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841614128538296, authorId=1166071514408870230, language=CN, stringName=毛河光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
    c Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Li Zhang , Hongsheng Yuan , Yue Meng , Ho-kwang Mao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges
    [Author(id=1166070884529266972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070884659290398, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, authorId=1166070884529266972, language=EN, stringName=Sheng-Ao Liu, firstName=Sheng-Ao, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070884764147999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, authorId=1166070884529266972, language=CN, stringName=刘盛遨, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070884860616993, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070884990640419, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, authorId=1166070884860616993, language=EN, stringName=Shu-Guang Li, firstName=Shu-Guang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070885091303716, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841060019036357, authorId=1166070884860616993, language=CN, stringName=李曙光, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sheng-Ao Liu , Shu-Guang Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Review
    Theoretical Progress and Key Technologies of Onshore Ultra-Deep Oil/Gas Exploration
    [Author(id=1166070972639011324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070972781617662, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070972639011324, language=EN, stringName=Xusheng Guo, firstName=Xusheng, middleName=null, lastName=Guo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070972890669567, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070972639011324, language=CN, stringName=郭旭升, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070973008110081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070973154910723, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973008110081, language=EN, stringName=Dongfeng Hu, firstName=Dongfeng, middleName=null, lastName=Hu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070973259768324, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973008110081, language=CN, stringName=胡东风, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070973373014534, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070973532398088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973373014534, language=EN, stringName=Yuping Li, firstName=Yuping, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070973637255689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973373014534, language=CN, stringName=李宇平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070973754696203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070973901496845, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973754696203, language=EN, stringName=Jinbao Duan *, firstName=Jinbao Duan, middleName=null, lastName=*, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070974006354446, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070973754696203, language=CN, stringName=段金宝 *, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070974115406352, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070974262206994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974115406352, language=EN, stringName=Xuefeng Zhang, firstName=Xuefeng, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute of Oil & Gas; School of Earth and Space Sciences, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070974367064595, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974115406352, language=CN, stringName=张学丰, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Institute of Oil & Gas; School of Earth and Space Sciences, Peking University, Beijing 100871, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070974476116501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070974622917143, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974476116501, language=EN, stringName=Xiaojun Fan, firstName=Xiaojun, middleName=null, lastName=Fan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070974731969048, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974476116501, language=CN, stringName=范小军, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070974836826650, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070974979432989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974836826650, language=EN, stringName=Hua Duan, firstName=Hua, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070975092679198, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070974836826650, language=CN, stringName=段华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070975201731104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070975344337442, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070975201731104, language=EN, stringName=Wencheng Li, firstName=Wencheng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070975457583651, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841138263777762, authorId=1166070975201731104, language=CN, stringName=李文成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a SINOPEC Exploration Company, Chengdu 610041, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xusheng Guo , Dongfeng Hu , Yuping Li , Jinbao Duan * , Xuefeng Zhang , Xiaojun Fan , Hua Duan , Wencheng Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Article
    Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia
    [Author(id=1166071293385827001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071293557793468, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071293385827001, language=EN, stringName=Nikolay V. Sobolev, firstName=Nikolay V., middleName=null, lastName=Sobolev, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
    b Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071293658456765, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071293385827001, language=CN, stringName=Nikolay V. Sobolev, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
    b Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071293763314367, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071293901726401, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071293763314367, language=EN, stringName=Anatoly A. Tomilenko, firstName=Anatoly A., middleName=null, lastName=Tomilenko, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071294006584002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071293763314367, language=CN, stringName=Anatoly A. Tomilenko, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071294107247300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071294254047945, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071294107247300, language=EN, stringName=Taras A. Bul´bak, firstName=Taras A., middleName=null, lastName=Bul´bak, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071294358905549, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071294107247300, language=CN, stringName=Taras A. Bul´bak, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071294459568848, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071294631535319, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071294459568848, language=EN, stringName=Alla M. Logvinova, firstName=Alla, middleName=null, lastName=M. Logvinova, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
    b Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071294740587226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841665148052206, authorId=1166071294459568848, language=CN, stringName=Alla M. Logvinova, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
    b Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090, Russia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Nikolay V. Sobolev , Anatoly A. Tomilenko , Taras A. Bul´bak , Alla M. Logvinova

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Article
    Applications for Nanoscale X-Ray Imaging at High Pressure
    [Author(id=1166071294618952406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071294786724571, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071294618952406, language=EN, stringName=Wendy L. Mao, firstName=Wendy, middleName=null, lastName=L. Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
    b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071294883193564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071294618952406, language=CN, stringName=毛立文, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
    b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071294979662559, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071295109685986, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071294979662559, language=EN, stringName=Yu Lin, firstName=Yu, middleName=null, lastName=Lin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071295210349284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071294979662559, language=CN, stringName=林昱, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071295311012583, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071295436841706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071295311012583, language=EN, stringName=Yijin Liu, firstName=Yijin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA., bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071295537505004, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071295311012583, language=CN, stringName=刘宜晋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA., bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071295638168303, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071295772386033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071295638168303, language=EN, stringName=Jin Liu, firstName=Jin, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071295868855027, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841666548949744, authorId=1166071295638168303, language=CN, stringName=刘锦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wendy L. Mao , Yu Lin , Yijin Liu , Jin Liu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Article
    Carbonation of Chrysotile under Subduction Conditions
    [Author(id=1166071547334156781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071547472568815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, authorId=1166071547334156781, language=EN, stringName=Mihye Kong, firstName=Mihye, middleName=null, lastName=Kong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071547577426416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, authorId=1166071547334156781, language=CN, stringName=Mihye Kong, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address= Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071547682284018, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071547871027701, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, authorId=1166071547682284018, language=EN, stringName=Yongjae Lee, firstName=Yongjae, middleName=null, lastName=Lee, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address= Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea
    Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071547980079606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841651097133789, authorId=1166071547682284018, language=CN, stringName=Yongjae Lee, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address= Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea
    Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Mihye Kong , Yongjae Lee

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Article
    Core Metabolic Features and Hot Origin of Bathyarchaeota
    [Author(id=1166070879567405300, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070879705817334, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070879567405300, language=EN, stringName=Xiaoyuan Feng, firstName=Xiaoyuan, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070879806480631, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070879567405300, language=CN, stringName=冯晓远, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070879907143929, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070880028778747, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070879907143929, language=EN, stringName=Yinzhao Wang, firstName=Yinzhao, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070880116859132, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070879907143929, language=CN, stringName=王寅炤, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070880209133824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070880326574339, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070880209133824, language=EN, stringName=Rahul Zubin, firstName=Rahul, middleName=null, lastName=Zubin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070880418849028, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070880209133824, language=CN, stringName=Rahul Zubi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070880506929414, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070880653730057, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070880506929414, language=EN, stringName=Fengping Wang, firstName=Fengping, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070880746004746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841058794299588, authorId=1166070880506929414, language=CN, stringName=王风平, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
    b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xiaoyuan Feng , Yinzhao Wang , Rahul Zubin , Fengping Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Deep Matter & Energy—Article
    Structural Studies on the Cu-H System under Compression
    [Author(id=1166071509929353491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071510105514261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071509929353491, language=EN, stringName=Jack Binns, firstName=Jack, middleName=null, lastName=Binns, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071510231343382, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071509929353491, language=CN, stringName=Jack Binns, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071510352978200, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071510516556058, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071510352978200, language=EN, stringName=Miriam Peña-Alvarez, firstName=Miriam, middleName=null, lastName=Peña-Alvarez, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071510642385179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071510352978200, language=CN, stringName=Miriam Peña-Alvarez, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071510768214301, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071510935986463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071510768214301, language=EN, stringName=Mary-Ellen Donnelly, firstName=Mary-Ellen, middleName=null, lastName=Donnelly, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071511061815585, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071510768214301, language=CN, stringName=Mary-Ellen Donnelly, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071511187644709, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071511426720041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511187644709, language=EN, stringName=Eugene Gregoryanz, firstName=Eugene, middleName=null, lastName=Gregoryanz, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
    b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
    c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071511531577642, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511187644709, language=CN, stringName=Eugene Gregoryanz, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
    b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK
    c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071511636435244, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071511774847278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511636435244, language=EN, stringName=Ross T. Howie, firstName=Ross, middleName=null, lastName=T. Howie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071511875510575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511636435244, language=CN, stringName=Ross T. Howie, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071511984562481, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071512118780211, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511984562481, language=EN, stringName=Philip Dalladay-Simpson, firstName=Philip, middleName=null, lastName=Dalladay-Simpson, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071512223637812, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841612270461622, authorId=1166071511984562481, language=CN, stringName=Philip Dalladay-Simpson, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Jack Binns , Miriam Peña-Alvarez , Mary-Ellen Donnelly , Eugene Gregoryanz , Ross T. Howie , Philip Dalladay-Simpson

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Fuels—Review
    Development of Fuel/Engine Systems—The Way Forward to Sustainable Transport
    [Author(id=1166070484820484155, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841046731481276, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070485030199359, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841046731481276, authorId=1166070484820484155, language=EN, stringName=Gautam Kalghatgi, firstName=Gautam, middleName=null, lastName=Kalghatgi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Imperial College London, London, SW7 2AZ, UK
    b University of Oxford, Oxford OX1 2JD, UK
    c Saudi Aramco, Dhahran 31311, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070485139251264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841046731481276, authorId=1166070484820484155, language=CN, stringName=Gautam Kalghatgi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=a Imperial College London, London, SW7 2AZ, UK
    b University of Oxford, Oxford OX1 2JD, UK
    c Saudi Aramco, Dhahran 31311, Saudi Arabia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Gautam Kalghatgi

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Fuels—Review
    The Possibility of Active Attitude Control for Fuel Spray
    [Author(id=1166070805135287286, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841293394306015, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070805256922104, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841293394306015, authorId=1166070805135287286, language=EN, stringName=Masataka Arai, firstName=Masataka, middleName=null, lastName=Arai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Tokyo Denki University, Tokyo 120-8551, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070805340808185, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841293394306015, authorId=1166070805135287286, language=CN, stringName=Masataka Arai, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Tokyo Denki University, Tokyo 120-8551, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Masataka Arai

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Fuels—Review
    A High-Efficiency Two-Stroke Engine Concept: The Boosted Uniflow Scavenged Direct-Injection Gasoline (BUSDIG) Engine with Air Hybrid Operation
    [Author(id=1166071431114186791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071431281958953, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, authorId=1166071431114186791, language=EN, stringName=Xinyan Wang, firstName=Xinyan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071431407788074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, authorId=1166071431114186791, language=CN, stringName=王新颜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071431533617196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071431697195054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, authorId=1166071431533617196, language=EN, stringName=Hua Zhao, firstName=Hua, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071431823024175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841806357684508, authorId=1166071431533617196, language=CN, stringName=赵华, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Centre for Advanced Powertrain and Fuels, Brunel University London, Uxbridge UB8 3PH, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xinyan Wang , Hua Zhao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Fuels—Article
    Injection Strategy in Natural Gas-Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion under Low Load Conditions
    [Author(id=1166070643025437336, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070643155460762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643025437336, language=EN, stringName=Hyunwook Park, firstName=Hyunwook, middleName=null, lastName=Park, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070643440673435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643025437336, language=CN, stringName=Hyunwook Park, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070643537142429, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070643667165855, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643537142429, language=EN, stringName=Euijoon Shim, firstName=Euijoon, middleName=null, lastName=Shim, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070643772023456, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643537142429, language=CN, stringName=Euijoon Shim, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070643868492450, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070644002710180, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643868492450, language=EN, stringName=Choongsik Bae, firstName=Choongsik, middleName=null, lastName=Bae, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070644103373477, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841165941989952, authorId=1166070643868492450, language=CN, stringName=Choongsik Bae, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hyunwook Park , Euijoon Shim , Choongsik Bae

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Flues—Article
    An Experimental Investigation on Low Load Combustion Stability and Cold-Firing Capacity of a Gasoline Compression Ignition Engine
    [Author(id=1166070632011194942, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166070632149606976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632011194942, language=EN, stringName=Lei Zhou, firstName=Lei, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070632258658881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632011194942, language=CN, stringName=周磊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070632359322179, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166070632585814597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632359322179, language=EN, stringName=Jianxiong Hua, firstName=Jianxiong, middleName=null, lastName=Hua, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070632690672198, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632359322179, language=CN, stringName=华剑雄, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070632791335496, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070632933941834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632791335496, language=EN, stringName=Haiqiao Wei, firstName=Haiqiao, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070633038799435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070632791335496, language=CN, stringName=卫海桥, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070633139462735, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070633500172882, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070633139462735, language=EN, stringName=Yiyong Han, firstName=Yiyong, middleName=null, lastName=Han, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
    b Yuchai Machinery Co., Ltd., Yulin 537005, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070633609224787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841159554064950, authorId=1166070633139462735, language=CN, stringName=韩义勇, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
    b Yuchai Machinery Co., Ltd., Yulin 537005, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Lei Zhou , Jianxiong Hua , Haiqiao Wei , Yiyong Han

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Engines and Fuels—Article
    Evaluation of H2 on the Evolution Mechanism of NOx Storage and Reduction over Pt–Ba–Ce/γ-Al2O3 Catalysts
    [Author(id=1166070582145114331, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070582283526365, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070582145114331, language=EN, stringName=Pan Wang, firstName=Pan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070582388383966, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070582145114331, language=CN, stringName=王攀, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070582501630176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070583504068834, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070582501630176, language=EN, stringName=Jing Yi, firstName=Jing, middleName=null, lastName=Yi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070583608926435, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070582501630176, language=CN, stringName=裔静, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070583709589733, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070583848001767, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070583709589733, language=EN, stringName=Chuan Sun, firstName=Chuan, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070583948665064, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070583709589733, language=CN, stringName=孙川, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070584049328362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070584187740396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070584049328362, language=EN, stringName=Peng Luo, firstName=Peng, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070584288403693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070584049328362, language=CN, stringName=罗鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070584393261295, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070584535867633, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070584393261295, language=EN, stringName=Lili Lei, firstName=Lili, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070584632336626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841121604002163, authorId=1166070584393261295, language=CN, stringName=雷利利, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Pan Wang , Jing Yi , Chuan Sun , Peng Luo , Lili Lei

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Green Chemical Engineering—Article
    Laminar-to-Turbulence Transition Revealed Through a Reynolds Number Equivalence
    [Author(id=1166071571854058069, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841691228234578, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071571958915670, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841691228234578, authorId=1166071571854058069, language=EN, stringName=Xiao Dong Chen, firstName=Xiao Dong, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071572055384663, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841691228234578, authorId=1166071571854058069, language=CN, stringName=陈晓东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xiao Dong Chen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Robotics—Article
    A Micro Peristaltic Pump Using an Optically Controllable Bioactuator
    [Author(id=1166070098437005766, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070098567029192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070098437005766, language=EN, stringName=Eitaro Yamatsuta, firstName=Eitaro, middleName=null, lastName=Yamatsuta, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070098659303881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070098437005766, language=CN, stringName=Eitaro Yamatsuta, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070098747384267, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070098877407693, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070098747384267, language=EN, stringName=Sze Ping Beh, firstName=Sze Ping, middleName=null, lastName=Beh, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070098965488078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070098747384267, language=CN, stringName=Sze Ping Beh, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070099057762768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070099175203282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099057762768, language=EN, stringName=Kaoru Uesugi, firstName=Kaoru, middleName=null, lastName=Uesugi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070099263283667, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099057762768, language=CN, stringName=Kaoru Uesugi, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070099359752661, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070099472998871, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099359752661, language=EN, stringName=Hidenobu Tsujimura, firstName=Hidenobu, middleName=null, lastName=Tsujimura, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070099565273560, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099359752661, language=CN, stringName=Hidenobu Tsujimura, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070099653353946, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070099770794460, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099653353946, language=EN, stringName=Keisuke Morishima, firstName=Keisuke, middleName=null, lastName=Morishima, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070099858874845, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159841117728465258, authorId=1166070099653353946, language=CN, stringName=Keisuke Morishima, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Eitaro Yamatsuta , Sze Ping Beh , Kaoru Uesugi , Hidenobu Tsujimura , Keisuke Morishima

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Drop-on-Demand Printing—Article
    Multi-Objective Optimization Design through Machine Learning for Drop-on-Demand Bioprinting
    [Author(id=1166071744588079942, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071744713909063, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071744588079942, language=EN, stringName=Jia Shi, firstName=Jia, middleName=null, lastName=Shi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071744835543880, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071744588079942, language=CN, stringName=时佳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071744961373002, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071745087202123, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071744961373002, language=EN, stringName=Jinchun Song, firstName=Jinchun, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071745208836940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071744961373002, language=CN, stringName=宋锦春, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071745334666062, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071745456300879, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071745334666062, language=EN, stringName=Bin Song, firstName=Bin, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071745582130000, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071745334666062, language=CN, stringName=Bin Song, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166071745703764818, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166071745829593939, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071745703764818, language=EN, stringName=Wen F. Lu, firstName=Wen, middleName=null, lastName=F. Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166071745951228756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159842250790330826, authorId=1166071745703764818, language=CN, stringName=Wen F. Lu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jia Shi , Jinchun Song , Bin Song , Wen F. Lu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.