2019-04-16 , Volume 5 Issue 2

Cover illustration

  •  

    Civil engineering infrastructure construction plays an important role in the economic and social development of all countries in the world. However, there are still many urgent problems need to be solved in terms of energy consumption, environmental protection, service life, safety and reliability, and disaster resistance. The development of high-performance structures characterized by high levels of safety, durability, disaster resistance, and environmental friendliness, and low maintenance requirements is of great significance for the realization of green, industrialized and sustainable development of civil engineering. High-performance materials, high-performance structural systems, advanced analytical theory, design methods, and structural health monitoring techniques are the future research directions.

    Download cover

  • Select all
    Editorial
  • Editorial
    Editorial for the Special Issue on High-Performance Structures
    [Author(id=1166069827426247429, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069827543687943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, authorId=1166069827426247429, language=EN, stringName=Xu-hong Zhou, firstName=Xu-hong, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Chongqing University, Chongqing 400045, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069827635962632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, authorId=1166069827426247429, language=CN, stringName=周绪红, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Chongqing University, Chongqing 400045, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069827963118346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069828093141772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, authorId=1166069827963118346, language=EN, stringName=Yu-hang Wang, firstName=Yu-hang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Chongqing University, Chongqing 400045, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069828181222157, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840472740979501, authorId=1166069827963118346, language=CN, stringName=王宇航, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Chongqing University, Chongqing 400045, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Xu-hong Zhou , Yu-hang Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • Views & Comments
    Higher Performance Seismic Structures for Advanced Cities and Societies
    [Author(id=1166069696995975463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069697134387498, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, authorId=1166069696995975463, language=EN, stringName=Jiro Takagi, firstName=Jiro, middleName=null, lastName=Takagi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069697239245101, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069697377657136, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, authorId=1166069697239245101, language=EN, stringName=Akira Wada, firstName=Akira, middleName=null, lastName=Wada, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Materials and Structures Laboratory, Tokyo Institute of Technology, Tokyo 226-8503, Japan, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069697755144505, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166069697851613499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840211314205489, authorId=1166069697755144505, language=CN, stringName=Jiro Takagi , Akira Wada, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a b, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Jiro Takagi , Akira Wada

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    The Dynamic Functional Network Connectivity Analysis Framework
    [Author(id=1166069323228963654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069323350598472, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323228963654, language=EN, stringName=Zening Fu, firstName=Zening, middleName=null, lastName=Fu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The Mind Research Network, Albuquerque, NM 87106, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069323438678857, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323228963654, language=CN, stringName=Zening Fu, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a The Mind Research Network, Albuquerque, NM 87106, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069323526759243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069323673559886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323526759243, language=EN, stringName=Yuhui Du, firstName=Yuhui, middleName=null, lastName=Du, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a The Mind Research Network, Albuquerque, NM 87106, USA
    b School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069323770028879, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323526759243, language=CN, stringName=Yuhui Du, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a The Mind Research Network, Albuquerque, NM 87106, USA
    b School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069323858109265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069324000715604, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323858109265, language=EN, stringName=Vince D. Calhoun, firstName=Vince D., middleName=null, lastName=Calhoun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a The Mind Research Network, Albuquerque, NM 87106, USA
    c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069324092990293, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840123099603531, authorId=1166069323858109265, language=CN, stringName=Vince D. Calhoun, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, address=a The Mind Research Network, Albuquerque, NM 87106, USA
    c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zening Fu , Yuhui Du , Vince D. Calhoun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
    Eliminating Outdated Capacity to Promote Energy Conservation in China’s Coal-Fired Power Industry
    [Author(id=1166069868043887447, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069868203271001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868043887447, language=EN, stringName=Weiliang Wang, firstName=Weiliang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069868320711514, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868043887447, language=CN, stringName=王卫良, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069868438152028, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069868593341278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868438152028, language=EN, stringName=Zheng Li, firstName=Zheng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069868710781791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868438152028, language=CN, stringName=李政, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069868824028001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069869079880547, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868824028001, language=EN, stringName=Junfu Lyu, firstName=Junfu, middleName=null, lastName=Lyu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069869197321060, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069868824028001, language=CN, stringName=吕俊复, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069869520282470, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069869977461608, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069869520282470, language=EN, stringName=Weidou Ni, firstName=Weidou, middleName=null, lastName=Ni, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069870099096425, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840506337354583, authorId=1166069869520282470, language=CN, stringName=倪维斗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Weiliang Wang , Zheng Li , Junfu Lyu , Weidou Ni

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Topic Insights
  • Topic Insights
    Sustainable High-Performance Resilient Structures
    [Author(id=1166069809533346530, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069809671758564, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, authorId=1166069809533346530, language=EN, stringName=Hong Hao, firstName=Hong, middleName=null, lastName=Hao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a ARC Laureate Fellow, John Curtin Distinguished Professor, School of Civil and Mechanical Engineering, Curtin University, WA 6102, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069809776616165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, authorId=1166069809533346530, language=CN, stringName=Hong Hao, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a ARC Laureate Fellow, John Curtin Distinguished Professor, School of Civil and Mechanical Engineering, Curtin University, WA 6102, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069809881473767, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069810015691497, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, authorId=1166069809881473767, language=EN, stringName=Jun Li, firstName=Jun, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Senior Lecturer, School of Civil and Mechanical Engineering, Curtin University, WA 6102, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069810120549098, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840468567647020, authorId=1166069809881473767, language=CN, stringName=Jun Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Senior Lecturer, School of Civil and Mechanical Engineering, Curtin University, WA 6102, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hong Hao , Jun Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • Research High Performance Structures: Building Structures and Materials—Review
    Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring
    [Author(id=1166070294998868168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070295162446026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070294998868168, language=EN, stringName=Billie F. Spencer Jr., firstName=Billie F. Spencer, middleName=null, lastName=Jr., prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070295267303627, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070294998868168, language=CN, stringName=Billie F. Spencer Jr., firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070295372161229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070295535739088, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070295372161229, language=EN, stringName=Vedhus Hoskere, firstName=Vedhus, middleName=null, lastName=Hoskere, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA
    b Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2302, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070295640596689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070295372161229, language=CN, stringName=Vedhus Hoskere, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA
    b Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2302, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070295741259987, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070295871283413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070295741259987, language=EN, stringName=Yasutaka Narazaki, firstName=Yasutaka, middleName=null, lastName=Narazaki, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070295976141014, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840653511286932, authorId=1166070295741259987, language=CN, stringName=Yasutaka Narazaki, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Billie F. Spencer Jr. , Vedhus Hoskere , Yasutaka Narazaki

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research High Performance Structures: Building Structures and Materials—Article
    Testing of a full-scale composite floor plate
    [Author(id=1166069514531168817, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069514686358067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069514531168817, language=EN, stringName=Dennis Lam, firstName=Dennis, middleName=null, lastName=Lam, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069514807992884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069514531168817, language=CN, stringName=Dennis Lam, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069514921239094, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069515076428344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069514921239094, language=EN, stringName=Xianghe Dai, firstName=Xianghe, middleName=null, lastName=Dai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069515189674553, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069514921239094, language=CN, stringName=Xianghe Dai, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069515307115067, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069515462304317, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069515307115067, language=EN, stringName=Therese Sheehan, firstName=Therese, middleName=null, lastName=Sheehan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069515575550526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840254872051746, authorId=1166069515307115067, language=CN, stringName=Therese Sheehan, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Engineering, University of Bradford, Bradford, United Kingdom, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Dennis Lam , Xianghe Dai , Therese Sheehan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research High Performance Structures: Building Structures and Materials—Article
    The State of the Art of Data Science and Engineering in Structural Health Monitoring
    [Author(id=1166069781687362204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069781825774238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069781687362204, language=EN, stringName=Yuequan Bao, firstName=Yuequan, middleName=null, lastName=Bao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069781930631839, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069781687362204, language=CN, stringName=鲍跃全, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069782039683745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069782182290083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782039683745, language=EN, stringName=Zhicheng Chen, firstName=Zhicheng, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069782287147684, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782039683745, language=CN, stringName=陈智成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069782392005286, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069782547194536, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782392005286, language=EN, stringName=Shiyin Wei, firstName=Shiyin, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069782652052137, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782392005286, language=CN, stringName=魏世银, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069782773686955, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069782916293293, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782773686955, language=EN, stringName=Yang Xu, firstName=Yang, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069783021150894, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069782773686955, language=CN, stringName=徐阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069783121814192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069783264420530, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069783121814192, language=EN, stringName=Zhiyi Tang, firstName=Zhiyi, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069783365083827, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069783121814192, language=CN, stringName=唐志一, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069783465747125, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069783608353463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069783465747125, language=EN, stringName=Hui Li, firstName=Hui, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069783709016760, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840630358729679, authorId=1166069783465747125, language=CN, stringName=李惠, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yuequan Bao , Zhicheng Chen , Shiyin Wei , Yang Xu , Zhiyi Tang , Hui Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research High Performance Structures: Building Structures and Materials—Article
    Steel Design by Advanced Analysis: Material Modeling and Strain Limits
    [Author(id=1166069712670089617, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=Leroy.gardner@imperial.ac.uk, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069712774947218, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, authorId=1166069712670089617, language=EN, stringName=Leroy Gardner, firstName=Leroy, middleName=null, lastName=Gardner, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069712875610516, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069712984662421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, authorId=1166069712875610516, language=EN, stringName=Xiang Yun, firstName=Xiang, middleName=null, lastName=Yun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069713089520023, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069713194377624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, authorId=1166069713089520023, language=EN, stringName=Andreas Fieber, firstName=Andreas, middleName=null, lastName=Fieber, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069713299235226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069713404092827, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, authorId=1166069713299235226, language=EN, stringName=Lorenzo Macorini, firstName=Lorenzo, middleName=null, lastName=Macorini, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069713647362463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166069713785774497, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840229475541889, authorId=1166069713647362463, language=CN, stringName=Leroy Gardner, Xiang Yun, Andreas Fieber, Lorenzo Macorini, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Leroy Gardner , Xiang Yun , Andreas Fieber , Lorenzo Macorini

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research High Performance Structures: Building Structures and Materials—Article
    High-Performance and Multifunctional Cement-Based Composite Material
    [Author(id=1166070177717740238, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840596481336239, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070177851957968, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840596481336239, authorId=1166070177717740238, language=EN, stringName=Victor C. Li, firstName=Victor C., middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Michigan, MI 48109-2125, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070177952621265, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840596481336239, authorId=1166070177717740238, language=CN, stringName=Victor C. Li, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Department of Civil and Environmental Engineering, University of Michigan, MI 48109-2125, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Victor C. Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research AI for Precision Medicine—Review
    Deep Learning in Medical Ultrasound Analysis: A Review
    [Author(id=1166069416267014384, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069416384454898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416267014384, language=EN, stringName=Shengfeng Liu, firstName=Shengfeng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069416468340979, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416267014384, language=CN, stringName=刘盛锋, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069416556421365, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069416669667575, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416556421365, language=EN, stringName=Yi Wang , Xin Yang, firstName=Yi, middleName=null, lastName=Wang , Xin Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069416757747960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416556421365, language=CN, stringName=王毅, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069416841634042, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069416959074556, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416841634042, language=EN, stringName=Baiying Lei, firstName=Baiying, middleName=null, lastName=Lei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069417047154941, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069416841634042, language=CN, stringName=杨鑫, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069417135235327, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069417252675841, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417135235327, language=EN, stringName=Li Liu, firstName=Li, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069417336561922, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417135235327, language=CN, stringName=雷柏英, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069417428836612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069417542082822, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417428836612, language=EN, stringName=Shawn Xiang Li, firstName=Shawn, middleName=null, lastName=Xiang Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069417630163207, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417428836612, language=CN, stringName=刘立, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069417714049289, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069417835684107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417714049289, language=EN, stringName=Dong Ni, firstName=Dong, middleName=null, lastName=Ni, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069417919570188, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069417714049289, language=CN, stringName=李享, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069418011844878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069418171228432, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069418011844878, language=EN, stringName=Tianfu Wang, firstName=Tianfu, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069418276086033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069418011844878, language=CN, stringName=倪东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069418364166419, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={CN=AuthorExt(id=1166069418485801237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840179148088015, authorId=1166069418364166419, language=CN, stringName=汪天富, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a National-Regional Key Technology Engineering Laboratory for Medical Ultrasound & Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging & School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Shengfeng Liu , Yi Wang , Xin Yang , Baiying Lei , Li Liu , Shawn Xiang Li , Dong Ni , Tianfu Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research AI for Precision Medicine—Review
    Neural Mechanisms of Mental Fatigue Revisited: New Insights from the Brain Connectome
    [Author(id=1166069634022695762, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069634177885013, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634022695762, language=EN, stringName=Peng Qi, firstName=Peng, middleName=null, lastName=Qi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069634286936918, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634022695762, language=CN, stringName=齐鹏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069634395988824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069634542789466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634395988824, language=EN, stringName=Hua Ru, firstName=Hua, middleName=null, lastName=Ru, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069634681201499, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634395988824, language=CN, stringName=茹画, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069634790253405, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069634932859744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634790253405, language=EN, stringName=Lingyun Gao, firstName=Lingyun, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069635058688865, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069634790253405, language=CN, stringName=高凌云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069635167740771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069635314541413, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635167740771, language=EN, stringName=Xiaobing Zhang, firstName=Xiaobing, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Neurosurgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069635423593318, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635167740771, language=CN, stringName=张小兵, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=c Department of Neurosurgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069635536839529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069635683640171, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635536839529, language=EN, stringName=Tianshu Zhou, firstName=Tianshu, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069635792692076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635536839529, language=CN, stringName=周天舒, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069635914326894, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069636077904752, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635914326894, language=EN, stringName=Yu Tian, firstName=Yu, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069636182762354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069635914326894, language=CN, stringName=田语, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069636287619956, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069636434420598, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636287619956, language=EN, stringName=Nitish Thakor, firstName=Nitish, middleName=null, lastName=Thakor, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069636539278199, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636287619956, language=CN, stringName=Nitish Thakor, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069636648330105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069636790936443, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636648330105, language=EN, stringName=Anastasios Bezerianos, firstName=Anastasios, middleName=null, lastName=Bezerianos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069636891599740, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636648330105, language=CN, stringName=Anastasios Bezerianos, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069636992263038, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069637130675073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636992263038, language=EN, stringName=Jinsong Li, firstName=Jinsong, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069637243921282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069636992263038, language=CN, stringName=李劲松, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069637357167492, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069637579465607, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069637357167492, language=EN, stringName=Yu Sun, firstName=Yu, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,
    d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069637688517512, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840157413204615, authorId=1166069637357167492, language=CN, stringName=孙煜, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=b Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University,
    d Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Science, National University of Singapore, 117456, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Peng Qi , Hua Ru , Lingyun Gao , Xiaobing Zhang , Tianshu Zhou , Yu Tian , Nitish Thakor , Anastasios Bezerianos , Jinsong Li , Yu Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Synthetic Biology—Article
    Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations
    [Author(id=1166069953305698545, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069953448304884, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953305698545, language=EN, stringName=Lanqing Liu, firstName=Lanqing, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069953532190965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953305698545, language=CN, stringName=刘岚清, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069953624465655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069953767071994, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953624465655, language=EN, stringName=Hong Liu, firstName=Hong, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069953850958075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953624465655, language=CN, stringName=刘宏, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069953939038461, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069954081644800, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953939038461, language=EN, stringName=Wei Zhang, firstName=Wei, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069954169725185, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069953939038461, language=CN, stringName=张伟, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069954253611267, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069954396217606, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954253611267, language=EN, stringName=Mingdong Yao, firstName=Mingdong, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069954484297991, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954253611267, language=CN, stringName=姚明东, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069954568184073, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069954710790412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954568184073, language=EN, stringName=Bingzhi Li, firstName=Bingzhi, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069954794676493, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954568184073, language=CN, stringName=李炳志, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069954882756879, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069955021168914, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954882756879, language=EN, stringName=Duo Liu, firstName=Duo, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069955105054995, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069954882756879, language=CN, stringName=刘夺, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069955193135381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069955331547416, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069955193135381, language=EN, stringName=Yingjin Yuan, firstName=Yingjin, middleName=null, lastName=Yuan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069955415433497, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840563304391559, authorId=1166069955193135381, language=CN, stringName=元英进, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin
    b SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University,, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Lanqing Liu , Hong Liu , Wei Zhang , Mingdong Yao , Bingzhi Li , Duo Liu , Yingjin Yuan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Environmental Protection—Article
    A Historical Sedimentary Record of Mercury in a Shallow Eutrophic Lake: Impacts of Human Activities and Climate Change
    [Author(id=1166069420587147576, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069420704588090, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069420587147576, language=EN, stringName=Hanxiao Zhang, firstName=Hanxiao, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069420801057083, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069420587147576, language=CN, stringName=张含笑, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069420889137469, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069421010772287, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069420889137469, language=EN, stringName=Shouliang Huo, firstName=Shouliang, middleName=null, lastName=Huo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069421103046976, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069420889137469, language=CN, stringName=霍守亮, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069421195321666, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069421321150788, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421195321666, language=EN, stringName=Kevin M. Yeager, firstName=Kevin, middleName=null, lastName=M. Yeager, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069421409231173, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421195321666, language=CN, stringName=Kevin M. Yeager, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=b Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069421505700167, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069421627334985, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421505700167, language=EN, stringName=Beidou Xi, firstName=Beidou, middleName=null, lastName=Xi, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069421715415370, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421505700167, language=CN, stringName=席北斗, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069421811884364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069421929324878, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421811884364, language=EN, stringName=Jingtian Zhang, firstName=Jingtian, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069422029988175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069421811884364, language=CN, stringName=张靖天, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069422147428689, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069422306812243, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069422147428689, language=EN, stringName=Fengchang Wu, firstName=Fengchang, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069422420058452, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191923938018, authorId=1166069422147428689, language=CN, stringName=吴丰昌, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Hanxiao Zhang , Shouliang Huo , Kevin M. Yeager , Beidou Xi , Jingtian Zhang , Fengchang Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Intelligent Transportation—Article
    A Flexible Multi-Layer Map Model Designed for Lane-Level Route Planning in Autonomous Vehicles
    [Author(id=1166070446417437611, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070446547461037, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070446417437611, language=EN, stringName=Kun Jiang, firstName=Kun, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070446652318638, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070446417437611, language=CN, stringName=江昆, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070446748787632, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070446883005362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070446748787632, language=EN, stringName=Diange Yang, firstName=Diange, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070446983668659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070446748787632, language=CN, stringName=杨殿阁, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070447084331957, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070447214355383, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447084331957, language=EN, stringName=Chaoran Liu, firstName=Chaoran, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070447319212984, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447084331957, language=CN, stringName=柳超然, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070447419876282, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070447549899708, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447419876282, language=EN, stringName=Tao Zhang, firstName=Tao, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070447650563005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447419876282, language=CN, stringName=张涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070447747031999, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070447885444033, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447747031999, language=EN, stringName=Zhongyang Xiao, firstName=Zhongyang, middleName=null, lastName=Xiao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070447981913026, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840783027200470, authorId=1166070447747031999, language=CN, stringName=肖中阳, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering & Collaborative Innovation Center of Intelligent New Energy Vehicles, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Kun Jiang , Diange Yang , Chaoran Liu , Tao Zhang , Zhongyang Xiao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Manufacturing—Review
    Development of and Perspective on High-Performance Nanostructured Bainitic Bearing Steel
    [Author(id=1166069668294352972, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069668449542223, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, authorId=1166069668294352972, language=EN, stringName=Fucheng Zhang, firstName=Fucheng, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,
    b National Engineering Research Center For Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069668541816912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, authorId=1166069668294352972, language=CN, stringName=张福成, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,
    b National Engineering Research Center For Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069668629897298, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069668755726421, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, authorId=1166069668629897298, language=EN, stringName=Zhinan Yang, firstName=Zhinan, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b National Engineering Research Center For Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069668843806806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840191173157601, authorId=1166069668629897298, language=CN, stringName=杨志南, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=b National Engineering Research Center For Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Fucheng Zhang , Zhinan Yang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Rail Transit—Article
    Numerical and Experimental Study on Ventilation Panel Models in a Subway Passenger Compartment
    [Author(id=1166069945428795533, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069945579790479, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069945428795533, language=EN, stringName=Yu Tao, firstName=Yu, middleName=null, lastName=Tao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069945693036688, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069945428795533, language=CN, stringName=陶羽, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069945810477202, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069946003415189, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069945810477202, language=EN, stringName=Mingzhi Yang, firstName=Mingzhi, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069946120855702, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069945810477202, language=CN, stringName=杨明智, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069946234101912, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069946422845595, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069946234101912, language=EN, stringName=Bosen Qian, firstName=Bosen, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069946540286108, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069946234101912, language=CN, stringName=钱博森, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069946657726622, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069947031019681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069946657726622, language=EN, stringName=Fan Wu, firstName=Fan, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069947152654501, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069946657726622, language=CN, stringName=伍钒, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069947265900715, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069947454644402, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069947265900715, language=EN, stringName=Tiantian Wang, firstName=Tiantian, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166069947567890614, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840559156224902, authorId=1166069947265900715, language=CN, stringName=王田天, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South
    b Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha 410075, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Yu Tao , Mingzhi Yang , Bosen Qian , Fan Wu , Tiantian Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research Civil Engineering—Article
    Highway Planning and Design in the Qinghai–Tibet Plateau of China: A Cost-Safety Balance Perspective
    [Author(id=1166070420693770954, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070420836377294, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070420693770954, language=EN, stringName=Chengqian Li, firstName=Chengqian, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070420949623504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070420693770954, language=CN, stringName=李成谦, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070421054481107, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070421201281749, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070421054481107, language=EN, stringName=Lieyun Ding, firstName=Lieyun, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070421314527958, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070421054481107, language=CN, stringName=丁烈云, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166070421423579864, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166070421566186203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070421423579864, language=EN, stringName=Botao Zhong, firstName=Botao, middleName=null, lastName=Zhong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1166070421679432412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840766279344507, authorId=1166070421423579864, language=CN, stringName=钟波涛, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address= Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chengqian Li , Lieyun Ding , Botao Zhong

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Corrigendum
    Corrigendum to ‘‘Dual-Comb Ranging” [Engineering 4 (2018) 772–778]
    [Author(id=1166069295378784998, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840122910859850, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1166069295525585640, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840122910859850, authorId=1166069295378784998, language=EN, stringName=Zebin Zhu, firstName=Zebin, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1166069295643026154, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840122910859850, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=guanhaowu@mail.tsinghua.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1166069295823381229, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159840122910859850, authorId=1166069295643026154, language=EN, stringName=Guanhao Wu, firstName=Guanhao, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, , address=a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
    b Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zebin Zhu , Guanhao Wu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.