2025-09-29 , Volume 52 Issue 9

Cover illustration

  •  

    The cover illustration depicts a future scenario of intelligent hubs in the process industry, with an industrial foundation model serving as the core driver. High-speed data streams accompany material flows through virtual pipelines, interacting seamlessly with industrial equipment to realize cyber–physical intelligence powered by the model and carried out by intelligent agents. Floating displays present the system’s real-time self-monitoring, autonomous reasoning, and control actions. Through multisource data fusion and deep inference, artificial intelligence enables precise perception, proactive decision-making, and optimized control across the entire process. As a cognitive decision-making brain, the industrial foundation model not only governs the current production but also anticipates future developments, guiding the system toward self-adaptation and self-optimization. In this way, traditional factories are expected to be transformed into next-generation intelligent plants empowered by foundation models and intelligent agents, marking a new era of the smart process industry.



  • Select all
    Editorial
  • AI for Process Manufacturing: Innovations, Trends, and Challenges
    [Author(id=1177993965229879743, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959584346276, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965309571529, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959584346276, authorId=1177993965229879743, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=null, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Feng Qian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • News & Highlights
  • More Data Centers May Boast Their Own Power Plants
    [Author(id=1177993964453933429, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160005229724885837, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964571373952, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160005229724885837, authorId=1177993964453933429, language=EN, stringName=Mitch Leslie, firstName=Mitch, middleName=null, lastName=Leslie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Mitch Leslie

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Battery Swapping Emerges as Major Alternative to Charging Electric Vehicles
    [Author(id=1177993966278455824, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160006232654274751, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993966555279907, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160006232654274751, authorId=1177993966278455824, language=EN, stringName=Chris Palmer, firstName=Chris, middleName=null, lastName=Palmer, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Chris Palmer

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • AGU Posts Principles to Guide—and Foster—Geoengineering Research
    [Author(id=1177993961668022309, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160006227142959294, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993961751908396, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160006227142959294, authorId=1177993961668022309, language=EN, stringName=Sean Cummings, firstName=Sean, middleName=null, lastName=Cummings, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Senior Technology Writer, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Sean Cummings

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Views & Comments
  • How Can Active Machine Learning Aid Kinetic Model Generation, and Why Should We Care?
    [Author(id=1177993962569797771, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962766930078, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, authorId=1177993962569797771, language=EN, stringName=Yannick Ureel, firstName=Yannick, middleName=null, lastName=Ureel, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962855010475, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963010199745, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, authorId=1177993962855010475, language=EN, stringName=Maarten R. Dobbelaere, firstName=Maarten, middleName=null, lastName=R. Dobbelaere, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963224109275, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963400270059, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, authorId=1177993963224109275, language=EN, stringName=Istvan Lengyel, firstName=Istvan, middleName=null, lastName=Lengyel, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963521904890, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963630956806, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, authorId=1177993963521904890, language=EN, stringName=Maarten K. Sabbe, firstName=Maarten, middleName=null, lastName=K. Sabbe, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963870032142, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=Kevin.VanGeem@UGent.be, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964092330277, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993657510573044, authorId=1177993963870032142, language=EN, stringName=Kevin M. Van Geem, firstName=Kevin, middleName=null, lastName=M. Van Geem, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent 9052, Belgium, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yannick Ureel , Maarten R. Dobbelaere , Istvan Lengyel , Maarten K. Sabbe , Kevin M. Van Geem

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • A New Perspective on Fault Detection and Diagnosis for Plantwide Systems in the Era of Smart Process Manufacturing
    [Author(id=1177993962183921753, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958576820233, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962267807846, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958576820233, authorId=1177993962183921753, language=EN, stringName=Wangyan Li, firstName=Wangyan, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aCollege of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
    bSchool of Chemical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962397831285, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958576820233, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=J.Bao@unsw.edu.au, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993962532049029, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958576820233, authorId=1177993962397831285, language=EN, stringName=Jie Bao, firstName=Jie, middleName=null, lastName=Bao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bSchool of Chemical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Wangyan Li , Jie Bao

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Artificial Intelligence for Power Systems with Renewable Energy
    [Author(id=1177993962902040829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962998509829, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, authorId=1177993962902040829, language=EN, stringName=Luolin Xiong, firstName=Luolin, middleName=null, lastName=Xiong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aKey Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
    bDepartment of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963069813005, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=tangtany@gmail.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963216613652, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, authorId=1177993963069813005, language=EN, stringName=Yang Tang, firstName=Yang, middleName=null, lastName=Tang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aKey Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963300499742, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963636044074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, authorId=1177993963300499742, language=EN, stringName=Kankar Bhattacharya, firstName=Kankar, middleName=null, lastName=Bhattacharya, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963728318768, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=fqian@ecust.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963837370681, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959211053217, authorId=1177993963728318768, language=EN, stringName=Feng Qian, firstName=Feng, middleName=null, lastName=Qian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aKey Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Luolin Xiong , Yang Tang , Kankar Bhattacharya , Feng Qian

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Data Inference: Data Security Threats in the AI Era
    [Author(id=1177993965007581605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965112439216, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, authorId=1177993965007581605, language=EN, stringName=Zijun Wang, firstName=Zijun, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aMinistry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China
    bDepartment of Energy, Politecnico di Milano, Milano 20156, Italy, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965280211395, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=tingliu@xjtu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993965368291791, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, authorId=1177993965280211395, language=EN, stringName=Ting Liu, firstName=Ting, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aMinistry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965498315226, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965775139301, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, authorId=1177993965498315226, language=EN, stringName=Yang Liu, firstName=Yang, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aMinistry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965951300086, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993966064546302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, authorId=1177993965951300086, language=EN, stringName=Enrico Zio, firstName=Enrico, middleName=null, lastName=Zio, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=bDepartment of Energy, Politecnico di Milano, Milano 20156, Italy
    cCRC, Mines Paris-PSL University, Paris 06904, France, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993966148432390, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993966244901388, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959185887392, authorId=1177993966148432390, language=EN, stringName=Xiaohong Guan, firstName=Xiaohong, middleName=null, lastName=Guan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aMinistry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zijun Wang , Ting Liu , Yang Liu , Enrico Zio , Xiaohong Guan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Data Security and Privacy for AI-Enabled Smart Manufacturing
    [Author(id=1177993961810628660, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993961911291971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993961810628660, language=EN, stringName=Xin Wang, firstName=Xin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, d, address=aKey Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
    bShandong Provincial Key Laboratory of Industrial Network and Information System Security, Shandong Fundamental Research Center for Computer Science, Jinan 250014, China
    dState Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962007760970, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962183921754, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993962007760970, language=EN, stringName=Daniel E. Quevedo, firstName=Daniel, middleName=null, lastName=E. Quevedo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cSchool of Electrical and Computer Engineering, The University of Sydney, Sydney, NSW 2006, Australia, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962276196455, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962402025590, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993962276196455, language=EN, stringName=Dongrun Li, firstName=Dongrun, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aKey Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
    bShandong Provincial Key Laboratory of Industrial Network and Information System Security, Shandong Fundamental Research Center for Computer Science, Jinan 250014, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962494300291, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=lunarheart@zju.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993962586574988, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993962494300291, language=EN, stringName=Peng Cheng, firstName=Peng, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, *, address=dState Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962779512990, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962896953520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993962779512990, language=EN, stringName=Jiming Chen, firstName=Jiming, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dState Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963026976965, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963190554838, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958383882247, authorId=1177993963026976965, language=EN, stringName=Youxian Sun, firstName=Youxian, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dState Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xin Wang , Daniel E. Quevedo , Dongrun Li , Peng Cheng , Jiming Chen , Youxian Sun

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • Research
  • 0
    Intelligent Operational Decision-Making in Industrial Process: Development and Prospects
    [Author(id=1177993962976645307, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958329356294, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=tychai@mail.neu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=0, ext={EN=AuthorExt(id=1177993963077308619, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958329356294, authorId=1177993962976645307, language=EN, stringName=Tianyou Chai, firstName=Tianyou, middleName=null, lastName=Chai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=aState Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
    bNational Engineering Technology Research Center for Metallurgical Industry Automation, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963173777619, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958329356294, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963337355494, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958329356294, authorId=1177993963173777619, language=EN, stringName=Siyu Cheng, firstName=Siyu, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=aState Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Tianyou Chai , Siyu Cheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 2
    Foundation Models for the Process Industry: Challenges and Opportunities
    [Author(id=1177993964298744168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=renlei@buaa.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964466516341, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993964298744168, language=EN, stringName=Lei Ren, firstName=Lei, middleName=null, lastName=Ren, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964554596734, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=wanghaiteng@buaa.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964764311951, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993964554596734, language=EN, stringName=Haiteng Wang, firstName=Haiteng, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965041136041, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965175353786, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993965041136041, language=EN, stringName=Yuqing Wang, firstName=Yuqing, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965330543051, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965506703835, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993965330543051, language=EN, stringName=Keke Huang, firstName=Keke, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bSchool of Automation, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965766750692, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965926134259, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993965766750692, language=EN, stringName=Lihui Wang, firstName=Lihui, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Production Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993966106489344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993966257484302, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000793841557762, authorId=1177993966106489344, language=EN, stringName=Bohu Li, firstName=Bohu, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Lei Ren , Haiteng Wang , Yuqing Wang , Keke Huang , Lihui Wang , Bohu Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 2
    A Perspective on Artificial Intelligence for Process Manufacturing
    [Author(id=1177993962205786312, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962348392659, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, authorId=1177993962205786312, language=EN, stringName=Vipul Mann, firstName=Vipul, middleName=null, lastName=Mann, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aDepartment of Chemical Engineering, Columbia University, New York, NY 10027, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962402918615, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962545524960, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, authorId=1177993962402918615, language=EN, stringName=Jingyi Lu, firstName=Jingyi, middleName=null, lastName=Lu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bKey Laboratory of Smart Manufacturing in Energy Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962604245221, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962772017392, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, authorId=1177993962604245221, language=EN, stringName=Venkat Venkatasubramanian, firstName=Venkat, middleName=null, lastName=Venkatasubramanian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aDepartment of Chemical Engineering, Columbia University, New York, NY 10027, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962851709175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=rgani2018@gmail.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993962985926916, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159999319187186252, authorId=1177993962851709175, language=EN, stringName=Rafiqul Gani, firstName=Rafiqul, middleName=null, lastName=Gani, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, d, e, *, address=bKey Laboratory of Smart Manufacturing in Energy Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
    cPSE for SPEED Company, Charlottenlund 2920, Denmark
    dDepartment of Applied Sustainability, Széchenyi István University, Győr 9026, Hungary
    eSustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Vipul Mann , Jingyi Lu , Venkat Venkatasubramanian , Rafiqul Gani

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 1
    Future Manufacturing with AI-Driven Particle Vision Analysis in the Microscopic World
    [Author(id=1177993963925451074, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959173304479, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964160332122, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959173304479, authorId=1177993963925451074, language=EN, stringName=Guangyao Chen, firstName=Guangyao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aCornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, NY 14853, USA
    bCollege of Engineering, Cornell University, Ithaca, NY 14853, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964403601775, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959173304479, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=fengqi.you@cornell.edu, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964575568258, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959173304479, authorId=1177993964403601775, language=EN, stringName=Fengqi You, firstName=Fengqi, middleName=null, lastName=You, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=aCornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, NY 14853, USA
    bCollege of Engineering, Cornell University, Ithaca, NY 14853, USA
    cRobert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Guangyao Chen , Fengqi You

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 1
    Visualization of Industrial Big Data: State-of-the-Art and Future Perspectives
    [Author(id=1177993963564740900, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963698958638, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, authorId=1177993963564740900, language=EN, stringName=Tongkang Zhang, firstName=Tongkang, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aFaculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China
    bState Key Laboratory of Synthetical Automation for Process Industries & International Joint Research Laboratory of Integrated Automation, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963820593464, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=jlding@mail.neu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963946422596, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, authorId=1177993963820593464, language=EN, stringName=Jinliang Ding, firstName=Jinliang, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bState Key Laboratory of Synthetical Automation for Process Industries & International Joint Research Laboratory of Integrated Automation, Northeastern University, Shenyang 110819, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964101611858, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964202275165, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, authorId=1177993964101611858, language=EN, stringName=Zheng Liu, firstName=Zheng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cSchool of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964277772645, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964453933428, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959571763363, authorId=1177993964277772645, language=EN, stringName=Wenjun Zhang, firstName=Wenjun, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dDepartment of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Tongkang Zhang , Jinliang Ding , Zheng Liu , Wenjun Zhang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    A Multi-Scale Graph Neural Network for the Prediction of Multi-Component Gas Adsorption
    [Author(id=1177993963014394049, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959184994317, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963186360534, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959184994317, authorId=1177993963014394049, language=EN, stringName=Lujun Li, firstName=Lujun, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, address=aDepartment of Automation, University of Science and Technology of China, Hefei 230026, China
    bState Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
    cKey Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963307995363, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959184994317, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=yhb@sia.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963446407412, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959184994317, authorId=1177993963307995363, language=EN, stringName=Haibin Yu, firstName=Haibin, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, *, address=bState Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
    cKey Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Lujun Li , Haibin Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    STROM: A Spatial–Temporal Reduced-Order Model for Zinc Fluidized Bed Roaster Temperature Field Prediction
    [Author(id=1178276051672596798, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276051722928448, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, authorId=1178276051672596798, language=EN, stringName=Yunfeng Zhang, firstName=Yunfeng, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Automation, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276051760677186, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276051811008836, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, authorId=1178276051760677186, language=EN, stringName=Chunhua Yang, firstName=Chunhua, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Automation, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276051848757574, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=huangkeke@csu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1178276051899089224, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, authorId=1178276051848757574, language=EN, stringName=Keke Huang, firstName=Keke, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Automation, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276051936837962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276051987169612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, authorId=1178276051936837962, language=EN, stringName=Tingwen Huang, firstName=Tingwen, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Science Program, Texas A&M University at Qatar, Doha 10587, Qatar, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276052029112654, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276052096221520, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160002770193408279, authorId=1178276052029112654, language=EN, stringName=Weihua Gui, firstName=Weihua, middleName=null, lastName=Gui, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Automation, Central South University, Changsha 410083, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yunfeng Zhang , Chunhua Yang , Keke Huang , Tingwen Huang , Weihua Gui

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Hedging Against Material Uncertainty via Chance-Constrained Recurrent Neural Networks: A Continuous Pharmaceutical Manufacturing Case Study
    [Author(id=1177993967205397075, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993967368974940, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, authorId=1177993967205397075, language=EN, stringName=Qingbo Meng, firstName=Qingbo, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993967478026853, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993967608050288, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, authorId=1177993967478026853, language=EN, stringName=I. David L. Bogle, firstName=I., middleName=null, lastName=David L. Bogle, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993967947788922, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=v.charitopoulos@ucl.ac.uk, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993968128144001, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265890, authorId=1177993967947788922, language=EN, stringName=Vassilis M. Charitopoulos, firstName=Vassilis, middleName=null, lastName=M. Charitopoulos, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=*, address=Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Qingbo Meng , I. David L. Bogle , Vassilis M. Charitopoulos

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Design of a Multi-Valent SARS-CoV-2 Peptide Vaccine for Broad Immune Protection via Deep Learning
    [Author(id=1177993962096734399, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962201592007, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993962096734399, language=EN, stringName=Ziyan Feng, firstName=Ziyan, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, #, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962268700877, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962386141397, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993962268700877, language=EN, stringName=Xuelian Pang, firstName=Xuelian, middleName=null, lastName=Pang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, #, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962436473050, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962532942046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993962436473050, language=EN, stringName=Qian Xu, firstName=Qian, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, #, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962616828135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962763628782, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993962616828135, language=EN, stringName=Zijie Gu, firstName=Zijie, middleName=null, lastName=Gu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962843320566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=slli@hsc.ecnu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993962931400962, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993962843320566, language=EN, stringName=Shiliang Li, firstName=Shiliang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bInnovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963015287046, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=zhulfl@ecust.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963187253521, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993963015287046, language=EN, stringName=Lili Zhu, firstName=Lili, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963266945305, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=hlli@ecust.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963631849769, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160003938575507723, authorId=1177993963266945305, language=EN, stringName=Honglin Li, firstName=Honglin, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, *, address=aShanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
    bInnovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
    cLingang Laboratory, Shanghai 200031, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Ziyan Feng , Xuelian Pang , Qian Xu , Zijie Gu , Shiliang Li , Lili Zhu , Honglin Li

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Toward Intelligent and Green Ethylene Manufacturing: An AI-Based Multi-Objective Dynamic Optimization Framework for the Steam Thermal Cracking Process
    [Author(id=1177993963598295335, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963724124463, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993963598295335, language=EN, stringName=Yao Zhang, firstName=Yao, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963854147898, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963992559943, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993963854147898, language=EN, stringName=Peng Sha, firstName=Peng, middleName=null, lastName=Sha, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bNational Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964114194772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=Meihong.Wang@sheffield.ac.uk, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964240023905, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993964114194772, language=EN, stringName=Meihong Wang, firstName=Meihong, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, *, address=aSchool of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964365853036, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964470710646, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993964365853036, language=EN, stringName=Cheng Zheng, firstName=Cheng, middleName=null, lastName=Zheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bNational Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964634288516, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964743340429, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993964634288516, language=EN, stringName=Shengyuan Huang, firstName=Shengyuan, middleName=null, lastName=Huang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964818837910, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=wux@seu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964961444256, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993964818837910, language=EN, stringName=Xiao Wu, firstName=Xiao, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bNational Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965154382263, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965250851264, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993959496265891, authorId=1177993965154382263, language=EN, stringName=Joan Cordiner, firstName=Joan, middleName=null, lastName=Cordiner, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Yao Zhang , Peng Sha , Meihong Wang , Cheng Zheng , Shengyuan Huang , Xiao Wu , Joan Cordiner

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Theoretical High-Throughput Screening of Single-Atom CO2 Electroreduction Catalysts to Methanol Using Active Learning
    [Author(id=1177993962771124381, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962859204781, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, authorId=1177993962771124381, language=EN, stringName=Honghao Chen, firstName=Honghao, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aDepartment of Chemical Engineering, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962947285175, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963060531401, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, authorId=1177993962947285175, language=EN, stringName=Jun Yin, firstName=Jun, middleName=null, lastName=Yin, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963136028881, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963278635235, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, authorId=1177993963136028881, language=EN, stringName=Jiali Li, firstName=Jiali, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963425435886, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=wangxiaonan@mail.tsinghua.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993963635151111, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958320967685, authorId=1177993963425435886, language=EN, stringName=Xiaonan Wang, firstName=Xiaonan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, *, address=aDepartment of Chemical Engineering, Tsinghua University, Beijing 100084, China
    cState Key Laboratory of Chemical Engineering and Low-Carbon Technology, Tsinghua University, Beijing 100084, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Honghao Chen , Jun Yin , Jiali Li , Xiaonan Wang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 1
    Pressure Sensors Based on the Third-Generation Semiconductor Silicon Carbide: A Comprehensive Review
    [Author(id=1177993967032537584, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993967254835712, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993967032537584, language=EN, stringName=Xudong Fang, firstName=Xudong, middleName=null, lastName=Fang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    cShandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
    dOverseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Yantai 265503, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993967414219270, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=chenwu@xjtu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993967594574353, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993967414219270, language=EN, stringName=Chen Wu, firstName=Chen, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993967716209178, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993967942701605, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993967716209178, language=EN, stringName=Bian Tian, firstName=Bian, middleName=null, lastName=Tian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    cShandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
    dOverseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Yantai 265503, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993968144028212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993968630567490, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993968144028212, language=EN, stringName=Libo Zhao, firstName=Libo, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, c, d, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    cShandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
    dOverseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Yantai 265503, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993968731230793, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993968852865618, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993968731230793, language=EN, stringName=Xueyong Wei, firstName=Xueyong, middleName=null, lastName=Wei, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993968978694746, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993969117106787, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998875152998848, authorId=1177993968978694746, language=EN, stringName=Zhuangde Jiang, firstName=Zhuangde, middleName=null, lastName=Jiang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aState Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, China
    bSchool of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Xudong Fang , Chen Wu , Bian Tian , Libo Zhao , Xueyong Wei , Zhuangde Jiang

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 1
    Study on Key Technologies of Passive Containment Heat Removal System for HPR1000
    [Author(id=1177993961877737534, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962007760971, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993961877737534, language=EN, stringName=Ji Xing, firstName=Ji, middleName=null, lastName=Xing, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Nuclear Power Engineering Co., Ltd., Beijing 100840, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962209087580, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962267807847, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993962209087580, language=EN, stringName=Li Gao, firstName=Li, middleName=null, lastName=Gao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Nuclear Power Engineering Co., Ltd., Beijing 100840, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962402025591, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962511077508, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993962402025591, language=EN, stringName=Feng Liu, firstName=Feng, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962586574989, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962766930076, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993962586574989, language=EN, stringName=Zhongning Sun, firstName=Zhongning, middleName=null, lastName=Sun, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962842427563, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962938896566, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993962842427563, language=EN, stringName=Li Li, firstName=Li, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Nuclear Power Engineering Co., Ltd., Beijing 100840, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963010199744, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963110863054, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993963010199744, language=EN, stringName=Xinli Yu, firstName=Xinli, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Nuclear Power Engineering Co., Ltd., Beijing 100840, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963253469407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963349938407, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993963253469407, language=EN, stringName=Yawei Mao, firstName=Yawei, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aChina Nuclear Power Engineering Co., Ltd., Beijing 100840, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963454796021, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963563847934, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993963454796021, language=EN, stringName=Haozhi Bian, firstName=Haozhi, middleName=null, lastName=Bian, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963865837837, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963953918232, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993963865837837, language=EN, stringName=Zhaoming Meng, firstName=Zhaoming, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964079747364, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=dingm2005@gmail.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964184604975, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160001121718690280, authorId=1177993964079747364, language=EN, stringName=Ming Ding, firstName=Ming, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bCollege of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ji Xing , Li Gao , Feng Liu , Zhongning Sun , Li Li , Xinli Yu , Yawei Mao , Haozhi Bian , Zhaoming Meng , Ming Ding

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Quality and Efficiency of a Brain-Smart Electric Tractor Unit Operation Control Mechanism: Instant Information Interaction and Collaborative Task Management
    [Author(id=1177993962431385724, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962553020552, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993962431385724, language=EN, stringName=Zhenhao Luo, firstName=Zhenhao, middleName=null, lastName=Luo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, #, address=aCollege of Engineering, China Agricultural University, Beijing 100083, China
    bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962620129425, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962729181339, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993962620129425, language=EN, stringName=Qingzhen Zhu, firstName=Qingzhen, middleName=null, lastName=Zhu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, #, address=cCollege of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962825650343, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962947285176, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993962825650343, language=EN, stringName=Mengnan Liu, firstName=Mengnan, middleName=null, lastName=Liu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, #, address=eState Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471003, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963060531403, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963148611794, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993963060531403, language=EN, stringName=Chunjiang Zhao, firstName=Chunjiang, middleName=null, lastName=Zhao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China
    dResearch Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963253469406, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963555459325, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993963253469406, language=EN, stringName=Zhenghe Song, firstName=Zhenghe, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aCollege of Engineering, China Agricultural University, Beijing 100083, China
    bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963635151112, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963916169491, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993963635151112, language=EN, stringName=Zhijun Meng, firstName=Zhijun, middleName=null, lastName=Meng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China
    dResearch Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964025221404, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964138467626, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993964025221404, language=EN, stringName=Bin Xie, firstName=Bin, middleName=null, lastName=Xie, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, address=aCollege of Engineering, China Agricultural University, Beijing 100083, China
    bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964213965105, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=changkai.wen@cau.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964377542980, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000238717034516, authorId=1177993964213965105, language=EN, stringName=Changkai Wen, firstName=Changkai, middleName=null, lastName=Wen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=aCollege of Engineering, China Agricultural University, Beijing 100083, China
    bState Key Laboratory of Intelligent Agricultural Power Equipment, Beijing 100097, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zhenhao Luo , Qingzhen Zhu , Mengnan Liu , Chunjiang Zhao , Zhenghe Song , Zhijun Meng , Bin Xie , Changkai Wen

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    Targeting IGF2BP2-CEMIP Boosts Antiangiogenic Therapy in Colorectal Cancer in Mice
    [Author(id=1177993962804678820, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962905342131, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993962804678820, language=EN, stringName=Weikang Chen, firstName=Weikang, middleName=null, lastName=Chen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, #, address=aDepartment of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
    bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963001811135, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963270246624, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993963001811135, language=EN, stringName=Haojie Bai, firstName=Haojie, middleName=null, lastName=Bai, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, #, address=aDepartment of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
    bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963358327016, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963500933368, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993963358327016, language=EN, stringName=Yani Huo, firstName=Yani, middleName=null, lastName=Huo, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, #, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963593208064, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964021027099, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993963593208064, language=EN, stringName=Yifan Wu, firstName=Yifan, middleName=null, lastName=Wu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964096524583, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964197187889, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993964096524583, language=EN, stringName=Wei Kang, firstName=Wei, middleName=null, lastName=Kang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964276879672, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964364960065, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993964276879672, language=EN, stringName=Dong Zhang, firstName=Dong, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964469817674, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964574675284, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993964469817674, language=EN, stringName=Yongxin Zhang, firstName=Yongxin, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964662755673, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964763418978, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993964662755673, language=EN, stringName=Shiyan Wang, firstName=Shiyan, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964918608237, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965036048756, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993964918608237, language=EN, stringName=Lixia Xu, firstName=Lixia, middleName=null, lastName=Xu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, d, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
    dDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965304484231, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=9, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965405147535, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993965304484231, language=EN, stringName=Chi Chun Wong, firstName=Chi, middleName=null, lastName=Chun Wong, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=eDepartment of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965493227925, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=10, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965640028572, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993965493227925, language=EN, stringName=Ka Fai To, firstName=Ka, middleName=null, lastName=Fai To, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cDepartment of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965870715306, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=11, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=lixiaox23@mail.sysu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993966168510901, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993965870715306, language=EN, stringName=Xiaoxing Li, firstName=Xiaoxing, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993966260785597, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, orderNo=12, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=junyu@cuhk.edu.hk, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993966378226117, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958572625928, authorId=1177993966260785597, language=EN, stringName=Jun Yu, firstName=Jun, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, *, address=bInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
    eDepartment of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Weikang Chen , Haojie Bai , Yani Huo , Yifan Wu , Wei Kang , Dong Zhang , Yongxin Zhang , Shiyan Wang , Lixia Xu , Chi Chun Wong , Ka Fai To , Xiaoxing Li , Jun Yu

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    How to Build New Productive Forces for Traditional Chinese Medicine Industry: Industrial Perception Intelligence and AI-Based Pharmaceutical Robot
    [Author(id=1177993962431385722, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962569797772, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993962431385722, language=EN, stringName=Zheng Li, firstName=Zheng, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, e, f, #, address=aState Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    fHaihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962653683862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962825650344, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993962653683862, language=EN, stringName=Qilong Xue, firstName=Qilong, middleName=null, lastName=Xue, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, #, address=bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962901147825, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963018588354, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993962901147825, language=EN, stringName=Yang Yu, firstName=Yang, middleName=null, lastName=Yu, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, e, f, #, address=aState Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    fHaihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963089891532, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963307995362, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993963089891532, language=EN, stringName=Yequan Yan, firstName=Yequan, middleName=null, lastName=Yan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, address=bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963417047278, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963572236543, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993963417047278, language=EN, stringName=Jingxuan Zhang, firstName=Jingxuan, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, address=bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963895197969, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964046192927, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993963895197969, language=EN, stringName=YangYang Su, firstName=YangYang, middleName=null, lastName=Su, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, address=bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964134273321, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964272685367, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993964134273321, language=EN, stringName=Chenfei Li, firstName=Chenfei, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, e, address=bCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    eTianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964419486022, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=zhangbolipr@163.com, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964536926544, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993964419486022, language=EN, stringName=Boli Zhang, firstName=Boli, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, c, f, *, address=aState Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    cInstitute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    fHaihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964608229717, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=chengyy@zju.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993964708893021, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1177993958581014538, authorId=1177993964608229717, language=EN, stringName=Yiyu Cheng, firstName=Yiyu, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, d, *, address=aState Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
    dCollege of Pharmaceutical Sciences, Zhejiang University, Zhejiang 310058, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Zheng Li , Qilong Xue , Yang Yu , Yequan Yan , Jingxuan Zhang , YangYang Su , Chenfei Li , Boli Zhang , Yiyu Cheng

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 2
    The “Eastern Data and Western Computing" Initiative in China Contributes to Its Net-Zero Target
    [Author(id=1178276025244287212, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276025294618862, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025244287212, language=EN, stringName=Ning Zhang, firstName=Ning, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aLeibniz Institute of Ecological Urban and Regional Development, Dresden 01217, Germany, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025340756208, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=huabo@hust.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1178276025399476466, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025340756208, language=EN, stringName=Huabo Duan, firstName=Huabo, middleName=null, lastName=Duan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, *, address=bSchool of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025437225204, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276025487556854, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025437225204, language=EN, stringName=Yuru Guan, firstName=Yuru, middleName=null, lastName=Guan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=c, address=cIntegrated Research on Energy, Environment and Society, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen 9747 AG, the Netherlands, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025537888504, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276025592414458, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025537888504, language=EN, stringName=Ruichang Mao, firstName=Ruichang, middleName=null, lastName=Mao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=d, address=dDTU Sustain, Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025630163196, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276025680494846, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025630163196, language=EN, stringName=Guanghan Song, firstName=Guanghan, middleName=null, lastName=Song, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=e, address=eCollege of Civil Engineering, Tongji University, Shanghai 200092, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025726632192, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1178276025844072706, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025726632192, language=EN, stringName=Jiakuan Yang, firstName=Jiakuan, middleName=null, lastName=Yang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bSchool of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1178276025915375876, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=y.shan@bham.ac.uk, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1178276025965707526, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159988006239134425, authorId=1178276025915375876, language=EN, stringName=Yuli Shan, firstName=Yuli, middleName=null, lastName=Shan, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=f, *, address=fSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)] Ning Zhang , Huabo Duan , Yuru Guan , Ruichang Mao , Guanghan Song , Jiakuan Yang , Yuli Shan

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 1
    Next Frontiers of Aviation Safety: System-of-Systems Safety
    [Author(id=1177993962298061008, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=daqingl@buaa.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=1, authorType=1, ext={EN=AuthorExt(id=1177993962428084441, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993962298061008, language=EN, stringName=Daqing Li, firstName=Daqing, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, b, *, address=aSchool of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
    bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962537136351, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962595856612, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993962537136351, language=EN, stringName=Anzhuo Yao, firstName=Anzhuo, middleName=null, lastName=Yao, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Reliability and Systems Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962704908523, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962839126261, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993962704908523, language=EN, stringName=Kaifeng Feng, firstName=Kaifeng, middleName=null, lastName=Feng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Reliability and Systems Engineering, Beihang University, Beijing 100191, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993962906235134, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=3, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993962985926917, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993962906235134, language=EN, stringName=Hang Zhou, firstName=Hang, middleName=null, lastName=Zhou, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963057230091, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=4, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963208225043, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993963057230091, language=EN, stringName=Ruixin Wang, firstName=Ruixin, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963292111132, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=5, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963736707377, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993963292111132, language=EN, stringName=Ming Cheng, firstName=Ming, middleName=null, lastName=Cheng, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993963858342203, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=6, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993963963199815, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993963858342203, language=EN, stringName=Hang Li, firstName=Hang, middleName=null, lastName=Li, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964068057422, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=7, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964151943513, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993964068057422, language=EN, stringName=Dongfang Wang, firstName=Dongfang, middleName=null, lastName=Wang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964370047339, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, orderNo=8, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964504265081, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1159998876088328643, authorId=1177993964370047339, language=EN, stringName=Shuiting Ding, firstName=Shuiting, middleName=null, lastName=Ding, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, address=bCollege of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Daqing Li , Anzhuo Yao , Kaifeng Feng , Hang Zhou , Ruixin Wang , Ming Cheng , Hang Li , Dongfang Wang , Shuiting Ding

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.

  • 0
    An Exact Algorithm for Placement Optimization in Circuit Design
    [Author(id=1177993964386824558, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993964491682168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, authorId=1177993964386824558, language=EN, stringName=Binqi Zhang, firstName=Binqi, middleName=null, lastName=Zhang, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=a, address=aSchool of Management, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993964684620168, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=lzhen@shu.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=0, ext={EN=AuthorExt(id=1177993964923695519, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, authorId=1177993964684620168, language=EN, stringName=Lu Zhen, firstName=Lu, middleName=null, lastName=Zhen, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=aSchool of Management, Shanghai University, Shanghai 200444, China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null), Author(id=1177993965045330346, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1177993965145993655, tenantId=1045748351789510663, journalId=1155139928190095384, articleId=1160000241195868184, authorId=1177993965045330346, language=EN, stringName=Gilbert Laporte, firstName=Gilbert, middleName=null, lastName=Laporte, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=b, c, address=bDepartment of Decision Sciences, HEC Montréal, Montréal, QC H3T 2A7, Canada
    cSchool of Management, University of Bath, Bath BA2 7AY, UK, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=null)]
    Binqi Zhang , Lu Zhen , Gilbert Laporte

    Nowadays, there has been a growing trend in the field of high-energy physics (HEP), in both its experimental and phenomenological studies, to incorporate machine learning (ML) and its specialized branch, deep learning (DL). This review paper provides a thorough illustration of these applications using different ML and DL approaches. The first part of the paper examines the basics of various particle physics types and establishes guidelines for assessing particle physics alongside the available learning models. Next, a detailed classification is provided for representing Jets that are reconstructed in high-energy collisions, mainly in proton-proton collisions at well-defined beam energies. This section covers various datasets, preprocessing techniques, and feature extraction and selection methods. The presented techniques can be applied to future hadron−hadron colliders (HHC), such as the high-luminosity LHC (HL-LHC) and the future circular collider−hadron−hadron (FCC-hh). The authors then explore several AI techniques analyses designed specifically for both image and point-cloud (PC) data in HEP. Additionally, a closer look is taken at the classification associated with Jet tagging in hadron collisions. In this review, various state-of-the-art (SOTA) techniques in ML and DL are examined, with a focus on their implications for HEP demands. More precisely, this discussion addresses various applications in extensive detail, such as Jet tagging, Jet tracking, and particle classification. The review concludes with an analysis of the current state of HEP using DL methodologies. It highlights the challenges and potential areas for future research, which are illustrated for each application.