期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第12卷 第5期 doi: 10.1016/j.eng.2021.03.021

克罗诺杆菌的食品安全风险及危害因子

a School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
b Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
c Foodmicrobe.com, Keyworth NG12 5GY, UK

收稿日期: 2020-10-07 修回日期: 2021-02-16 录用日期: 2021-03-11 发布日期: 2021-06-24

下一篇 上一篇

摘要

克罗诺杆菌(Cronobacter spp.)是一种革兰氏阴性条件致病菌,可导致新生儿与婴幼儿患脑膜炎、败血症以及坏死性小肠结肠炎等疾病,严重者留下神经系统后遗症。目前,Cronobacter spp. 对婴幼儿的高毒力已经引起了全世界的关注。本文分析了Cronobacter spp. 在重要食品中的流行情况,回顾了该菌在胁迫环境下的应答机制及其致病机制等,并强调了Cronobacter spp. 对食品安全的重要性,以及相关控制手段、临床治疗方案制定的意义。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Forsythe SJ. Updates on the Cronobacter genus. Ann Rev Food Sci Technol 2018;9:23–44. 链接1

[ 2 ] Iversen C, Mullane N, Mccardell B, Tall BD, Lehner A, Fanning S, et al. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 2008;58(6):1442–7.

[ 3 ] Strysko J, Cope JR, Martin H, Tarr C, Bowen A. Food safety and invasive Cronobacter infections during early infancy, 1961–2018. Emerg Infect Dis 2020;26(5):857–65. 链接1

[ 4 ] Alsonosi A, Hariri S, Kajsík M, Oriešková M, Hanulík V, Röderová M, et al. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Eur J Clin Microbiol Infect Dis 2015;34(10):1979–88. 链接1

[ 5 ] Chandrasekaran S, Burnham CD, Warner BB, Tarr PI, Wylie TN. Carriage of Cronobacter sakazakii in the very preterm infant gut. Clin Infect Dis 2018;67 (2):269–74. 链接1

[ 6 ] Lai KK. Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Medicine 2001;80 (2):113–22. 链接1

[ 7 ] International Commission on Microbiological Specifications for Foods (ICMSF). Microbiological testing in food safety management. Bosten: Springer; 2002.

[ 8 ] Ling N, Jiang Y, Zeng H, Ding Y, Forsythe S. Advances in our understanding and distribution of the Cronobacter genus in China. J Food Sci 2021;86(2):276–83. 链接1

[ 9 ] Burdette JH, Santos C. Enterobacter sakazakii brain abscess in the neonate: the importance of neuroradiologic imaging. Pediatr Radiol 2000;30(1):33–4. 链接1

[10] Blackwood BP, Hunter CJ. Cronobacter spp. In: Scheld WM, Hughes JM, Whitley RJ, editors. Emerging infections 10. Washington, DC: American Society for Microbiology; 2016. p. 255–63. 链接1

[11] Lee HA, Hong S, Park H, Kim H, Kim O. Cronobacter sakazakii infection induced fatal clinical sequels including meningitis in neonatal ICR mice. Lab Anim Res 2011;27(1):59–62. 链接1

[12] Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S, et al. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 2007;153(10):3538–47. 链接1

[13] Townsend SM, Hurrell E, Caubilla-Barron J, Loc-Carrillo C, Forsythe SJ. Characterization of an extended-spectrum beta-lactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. Microbiology 2008;154 (12):3659–67. 链接1

[14] Iversen C, Forsythe S. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Technol 2003;14(11):443–54. 链接1

[15] Urmenyi AMC, White FA. Neonatal death from pigmented coliform infection. Lancet 1961;277(7172):313–5. 链接1

[16] The Centers for Disease Control and Prevention. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. JAMA 2002;287(17):2204–5. 链接1

[17] Masood N, Moore K, Farbos A, Paszkiewicz K, Dickins B, McNally A, et al. Genomic dissection of the 1994 Cronobacter sakazakii outbreak in a French neonatal intensive care unit. BMC Genomics 2015;16:750. 链接1

[18] Liu X, Pei X, Guo Y. Isolation of Enterobacter sakazakii from infant fomular powder samples collected from Fuyang, Anhui Province, China. Chin J Food Hygiene 2005;(1):10–2. Chinese.

[19] Forsythe SJ. Chapter 13-new insights into the emergent bacterial pathogen Cronobacter. In: Ricke SC, Donaldson JR, Phillips CA, editors. Food safety emerging issues, technologies and systems. Pittsburgh: Academic Press; 2015. p. 265–308. 链接1

[20] Henry M, Fouladkhah A. Outbreak history, biofilm formation, and preventive measures for control of Cronobacter sakazakii in infant formula and infant care settings. Microorganisms 2019;7(3):77. 链接1

[21] Lu Y, Liu P, Li C, Sha M, Fang J, Gao J, et al. Prevalence and genetic diversity of Cronobacter species isolated from four infant formula production factories in China. Front Microbiol 2019;10:1938. 链接1

[22] Jacobs C, Braun P, Hammer P. Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder-producing plant. J Dairy Sci 2011;94(8):3801–10. 链接1

[23] Fei P, Man C, Lou B, Forsythe SJ, Chai Y, Li R, et al. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China. Appl Environ Microbiol 2015;81(16):5430–9. 链接1

[24] Mullane NR, Whyte P, Wall PG, Quinn T, Fanning S. Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility. Int J Food Microbiol 2007;116(1):73–81. 链接1

[25] Vasconcellos L, Carvalho CT, Tavares RO, de Mello MV, de Oliveira RC, Silva JN, et al. Isolation, molecular and phenotypic characterization of Cronobacter spp. in ready-to-eat salads and foods from Japanese cuisine commercialized in Brazil. Food Res Int 2018;107:353–9. 链接1

[26] Leclercq A, Wanegue C, Baylac P. Comparison of fecal coliform agar and violet red bile lactose agar for fecal coliform enumeration in foods. Appl Environ Microbiol 2002;68(4):1631–8. 链接1

[27] Turcovsky´ I, Kuniková K, Drahovská H, Kaclíková E. Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Antonie Van Leeuwenhoek 2011;99(2):257–69. 链接1

[28] Ling N, Li C, Zhang J, Wu Q, Zeng H, He W, et al. Prevalence and molecular and antimicrobial characteristics of Cronobacter spp. isolated from raw vegetables in China. Front Microbiol 2018;9:1149.

[29] Moravkova M, Verbikova V, Huvarova V, Babak V, Cahlikova H, Karpiskova R, et al. Occurrence of Cronobacter spp. in ready-to-eat vegetable products, frozen vegetables, and sprouts examined using cultivation and real-time PCR Methods. J Food Sci 2018;83(12):3054–8. 链接1

[30] Huang Y, Pang Y, Wang H, Tang Z, Zhou Y, Zhang W, et al. Occurrence and characterization of Cronobacter spp. in dehydrated rice powder from Chinese supermarket. PLoS ONE 2015;10(7):e0131053.

[31] Kandhai MC, Heuvelink AE, Reij MW, Beumer RR, Dijk R, van Tilburg JJHC, et al. A study into the occurrence of Cronobacter spp. in the Netherlands between 2001 and 2005. Food Control 2010;21(8):1127–36.

[32] Liu M, Hu G, Shi Y, Liu H, Li J, Shan X, et al. Contamination of Cronobacter spp. Chinese retail spices. Foodborne Pathog Dis 2018;15(10):637–44. 链接1

[33] Garbowska M, Berthold-Pluta A, Stasiak-Rózan _ ´ ska L. Microbiological quality of selected spices and herbs including the presence of Cronobacter spp. Food Microbiol 2015;49:1–5. 链接1

[34] Johler S, Stephan R, Hartmann I, Kuehner KA, Lehner A. Genes involved in yellow pigmentation of Cronobacter sakazakii ES5 and influence of pigmentation on persistence and growth under environmental stress. Appl Environ Microbiol 2010;76(4):1053–61. 链接1

[35] Koseki S, Nakamura N, Shiina T. Comparison of desiccation tolerance among Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica, and Cronobacter sakazakii in powdered infant formula. J Food Prot 2015;78 (1):104–10. 链接1

[36] Barron JC, Forsythe SJ. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J Food Prot 2007;70(9):2111–7. 链接1

[37] Breeuwer P, Lardeau A, Peterz M, Joosten HM. Desiccation and heat tolerance of Enterobacter sakazakii. J Appl Microbiol 2003;95(5):967–73. 链接1

[38] Srikumar S, Cao Y, Yan Q, Van Hoorde K, Nguyen S, Cooney S, et al. RNA sequencing-based transcriptional overview of xerotolerance in Cronobacter sakazakii SP291. Appl Environ Microbiol 2019;85(3):e01993-18. 链接1

[39] Hu S, Yu Y, Wu X, Xia X, Xiao X, Wu H. Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation. Food Res Int 2017;100:631–9. 链接1

[40] Riedel K, Lehner A. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 2007;7(8):1217–31. 链接1

[41] Iversen C, Lane M, Forsythe SJ. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett Appl Microbiol 2007;38:378–82. 链接1

[42] Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull 2011;36(5):347–55. 链接1

[43] Zhang M, Zhang X, Tong L, Wang Y, Ou D, Zhang J, et al. Genes involved in tolerance to osmotic stress by random mutagenesis in Cronobacter malonaticus. J Dairy Sci 2018;101(5):3851–8. 链接1

[44] World Health Organization, Food and Agriculture Organization of the United Nations. Enterobacter sakazakii and other microorganisms in powdered infant formula. Geneva: World Health Organization; 2004.

[45] Al-Holy MA, Lin M, Abu-ghoush MM, Al-qadiri HM, Rasco BA. Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. J Food Safety 2009;29 (2):287–301. 链接1

[46] Cal-Sabater P, Caro I, Castro MJ, Cao MJ, Quinto EJ. Flow cytometry to assess the counts and physiological state of Cronobacter sakazakii cells after heat exposure. Foods 2019;8(12):688. 链接1

[47] Asakura H, Morita-Ishihara T, Yamamoto S, Igimi S. Genetic characterization of thermal tolerance in Enterobacter sakazakii. Microbiol Immunol 2007;51 (7):671–7. 链接1

[48] Orieskova M, Kajsik M, Szemes T, Holy O, Forsythe S, Turna J, et al. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains. Antonie Van Leeuwenhoek 2016;109 (3):405–14. 链接1

[49] Finn S, Condell O, McClure P, Amézquita A, Fanning S. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front Microbiol 2013;4:331. 链接1

[50] Arroyo C, Condón S, Pagán R. Thermobacteriological characterization of Enterobacter sakazakii. Int J Food Microbiol 2009;136(1):110–8. 链接1

[51] Chauhan R, Bansal S, Azmi W, Goel G. Increased thermal tolerance in Cronobacter sakazakii strains in reconstituted milk powder due to cross protection by physiological stresses. J Food Saf 2020;40(4):e12810. 链接1

[52] Maerani M, Dewanti-Hariyadi R, Nurjanah S. Expression of stress regulator and virulence genes of Cronobacter sakazakii strain Yrt2a as a response to acid stress. Food Sci Biotechnol 2020;29(9):1273–9. 链接1

[53] Ling N, Zhang J, Li C, Zeng H, He W, Ye Y, et al. The glutaredoxin gene, grxB, affects acid tolerance, surface hydrophobicity, auto-aggregation, and biofilm formation in Cronobacter sakazakii. Front Microbiol 2018;9:133. 链接1

[54] Álvarez-Ordóñez A, Cummins C, Deasy T, Clifford T, Begley M, Hill C. Acid stress management by Cronobacter sakazakii. Int J Food Microbiol 2014;178:21–8. 链接1

[55] Alvarez-Ordóñez A, Begley M, Hill C. Selection for loss of RpoS in Cronobacter sakazakii by growth in the presence of acetate as a carbon source. Appl Environ Microbiol 2013;79(6):2099–102. 链接1

[56] Amalaradjou MAR, Venkitanarayanan K. Effect of trans-cinnamaldehyde on reducing resistance to environmental stresses in Cronobacter sakazakii. Foodborne Pathog Dis 2011;8(3):403–9. 链接1

[57] Li C, Zeng H, Zhang J, He W, Ling N, Chen M, et al. Prevalence, antibiotic susceptibility, and molecular characterization of Cronobacter spp. isolated from edible mushrooms in China. Front Microbiol 2019;10:283.

[58] Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C, Fayet O, et al. Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 2007;45(12):3979–85. 链接1

[59] Zeng HY, Lei T, He WJ, Zhang JM, Liang BS, Li CS, et al. Novel multidrugresistant Cronobacter sakazakii causing meningitis in neonate, China, 2015. Emerg Infect Dis 2018;24(11):2121–4. 链接1

[60] Liu BT, Song FJ, Zou M, Hao ZH, Shan H. Emergence of colistin resistance gene mcr-1 in Cronobacter sakazakii producing NDM-9 and in Escherichia coli from the same animal. Antimicrob Agents Chemother 2017;61(2):e01444-16. 链接1

[61] Yang J, Liu L, Feng Y, He D, Wang C, Zong Z. Potential mobilization of mcr-10 by an integrative mobile element via site-specific recombination in Cronobacter sakazakii. Antimicrob Agents Chemother 2021;65(2). e01717–20. 链接1

[62] Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004;10:S122–9. 链接1

[63] De Jong MG, Wood KB. Tuning spatial profiles of selection pressure to modulate the evolution of drug resistance. Phys Rev Lett 2018;120 (23):238102. 链接1

[64] Yelin I, Kishony R. Antibiotic resistance. Cell 2018;172(5):1136–1136.e1. 链接1

[65] Weng MQ, Ganguli K, Zhu WS, Shi HN, Walker WA. Conditioned medium from Bifidobacteria infantis protects against Cronobacter sakazakii-induced intestinal inflammation in newborn mice. Am J Physiol Gastr L 2014;306 (9):779–87. 链接1

[66] Campana R, Federici S, Ciandrini E, Manti A, Baffone W. Lactobacillus spp. inhibit the growth of Cronobacter sakazakii ATCC 29544 by altering its membrane integrity. J Food Sci Technol 2019;56(8):3962–7. 链接1

[67] Shi C, Jin T, Guo D, Zhang W, Yang B, Su D, et al. Citral attenuated intestinal inflammation induced by Cronobacter sakazakii in newborn mice. Foodborne Pathog Dis 2020;17(4):243–52. 链接1

[68] Shi C, Sun Y, Zhang X, Zheng Z, Yang M, Ben H, et al. Antimicrobial effect of lipoic acid against Cronobacter sakazakii. Food Control 2016;59:352–8. 链接1

[69] Townsend S, Barron CJ, Loc-Carrillo C, Forsythe S. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 2007;24 (1):67–74. 链接1

[70] Eshwar AK, Tasara T, Stephan R, Lehner A. Influence of FkpA variants on survival and replication of Cronobacter spp. in human macrophages. Res Microbiol 2015;166(3):186–95. 链接1

[71] Mange JP, Stephan R, Borel N, Wild P, Kim KS, Pospischil A, et al. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol 2006;6(1):58. 链接1

[72] Cui J, Hu J, Du X, Yan C, Xue G, Li S, et al. Genomic analysis of putative virulence factors affecting cytotoxicity of Cronobacter. Front Microbiol 2019;10:3104. 链接1

[73] Grim CJ, Kotewicz ML, Power KA, Gopinath G, Franco AA, Jarvis KG, et al. Pangenome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics 2013;14(1):366. 链接1

[74] Hoeflinger JL, Miller MJ. Cronobacter sakazakii ATCC 29544 autoaggregation requires FliC flagellation, not motility. Front Microbiol 2017;8:301. 链接1

[75] Giri CP, Shima K, Tall BD, Curtis S, Sathyamoorthy V, Hanisch B, et al. Cronobacter spp. (previously Enterobacter sakazakii) invade and translocate across both cultured human intestinal epithelial cells and human brain microvascular endothelial cells. Microb Pathog 2012;52(2):140–7. 链接1

[76] Fan H, Chen Z, Lin R, Liu Y,Wu X, Puthiyakunnon S, et al. Bacteroides fragilis strain ZY-312 defense against Cronobacter sakazakii-induced necrotizing enterocolitis in vitro and in a neonatal rat model. mSystems 2019;4(4):e00305–19. 链接1

[77] Almajed FS, Forsythe SJ. Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathog 2016;90: 55–63. 链接1

[78] Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasadarao NV. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: a role for outer membrane protein A. Lab Invest 2009;89(3):263–77. 链接1

[79] Mohan Nair K, Venkitanarayanan K, Silbart LK, Kim KS. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathog Dis 2009;6(4):495–501. 链接1

[80] Chandrapala D, Kim K, Choi Y, Senevirathne A, Kang DH, Ryu S, et al. Putative inv is essential for basolateral invasion of Caco-2 cells and acts synergistically with OmpA to affect in vitro and in vivo virulence of Cronobacter sakazakii ATCC 29544. Infect Immun 2014;82(5):1755–65. 链接1

[81] Kim K, Kim KP, Choi J, Lim JA, Lee J, Hwang S, et al. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Environ Microbiol 2010;76(15):5188–98. 链接1

[82] Alzahrani H, Winter J, Boocock D, De Girolamo L, Forsythe SJ. Characterization of outer membrane vesicles from a neonatal meningitic strain of Cronobacter sakazakii. FEMS Microbiol Lett 2015;362(12):fnv085.

[83] Pagotto FJ, Nazarowec-White M, Bidawid S, Farber JM. Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. J Food Prot 2003;66 (3):370–5. 链接1

[84] Raghav M, Aggarwal PK. Purification and characterization of Enterobacter sakazakii enterotoxin. Can J Microbiol 2007;53(6):750–5. 链接1

[85] Yang J, Wei L, Gu M, Fang X, Yang P. Identification of proteins involved in infectivity and enterotoxin production in Enterobacter sakazakii. J Rapid Meth Aut Mic 2009;17(2):164–81. 链接1

[86] Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M, et al. Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 2012;78(17):6035–50. 链接1

[87] Joseph S, Hariri S, Masood N, Forsythe S. Sialic acid utilization by Cronobacter sakazakii. Microb Informatics 2013;3(1):1–11. 链接1

[88] Ogrodzki P, Forsythe S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genomics 2015;16(1):758. 链接1

[89] Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, et al. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun 2011;79(4):1578–87. 链接1

[90] Suppiger A, Eshwar AK, Stephan R, Kaever V, Eberl L, Lehner A. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci Rep 2016;6(1):18753. 链接1

[91] Hunter CJ, Williams M, Petrosyan M, Guner Y, Mittal R, Mock D, et al. Lactobacillus bulgaricus prevents intestinal epithelial cell injury caused by Enterobacter sakazakii-induced nitric oxide both in vitro and in the newborn rat model of necrotizing enterocolitis. Infect Immun 2009;77(3):1031–43. 链接1

[92] Townsend S, Hurrell E, Forsythe S. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 2008;8(1):64. 链接1

[93] Amalaradjou MAR, Kim KS, Venkitanarayanan K. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int J Mol Sci 2014;15(5):8639–55. 链接1

[94] Mittal R, Bulgheresi S, Emami C, Prasadarao NV. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. J Immunol 2009;183(10):6588–99. 链接1

相关研究