期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第12卷 第5期 doi: 10.1016/j.eng.2021.09.018

基于高垂直磁各向异性L10 FePt单层膜的电流驱动SOT磁化翻转研究

a School of Automation, China University of Geosciences, Wuhan 430074, China
b Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan 430074, China
c School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
d China Resources Microelectronics Limited, Shanghai 200072, China
e Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
f Wuhan National high magnetic field center, Huazhong University of Science and Technology, Wuhan 430074, China

收稿日期: 2020-07-16 修回日期: 2021-09-01 录用日期: 2021-09-12 发布日期: 2022-01-03

下一篇 上一篇

摘要

本研究利用自旋轨道力矩(SOT)在单层L10 FePt 铁磁层中实现了电流驱动的部分磁化翻转,其中L10FePt 具有高垂直各向异性,Ku⊥为1.19 × 107 erg‧cm−3 (1 erg‧cm−3 = 0.1 J‧m−3)。与传统Ta/CoFeB/MgO 结构相比,L10 FePt 的SOT效率(βDL)要高几倍,可达8 × 10−6 Oe∙(A‧cm−2)−1( 1 Oe = 79.57747 A‧m−1)。L10 FePt的SOT效应起源于FePt 内部分布不均匀的位错和缺陷造成的结构反演对称性破缺。进一步,采用MgO和SrTiO3 (STO)两种衬底制备FePt 自旋器件,基于MgO衬底的FePt 具有颗粒状结构,而生长于STO衬底上的FePt 则为连续结构。研究发现,基于MgO衬底的FePt 器件具备更高的SOT等效场及SOT效率,且FePt 的SOT效率不仅取决于溅射温度导致的化学有序度变化,还与晶格失配导致的微观结构变化有关。本文的研究可为基于SOT效应的高热稳定性电致磁记录提供有效的方法。

参考文献

[ 1 ] Worledge DC, Hu G, Abraham DW, Sun JZ, Trouilloud PL, Nowak J, et al. Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl Phys Lett 2011;98(2):022501. 链接1

[ 2 ] Ramaswamy R, Lee JM, Cai K, Yang H. Recent advances in spin‒orbit torques: moving towards device applications. Appl Phys Rev 2018;5(3):031107. 链接1

[ 3 ] Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011;476(7359):189‒93. 链接1

[ 4 ] Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin‍‒‍torque switching with the giant spin Hall effect of tantalum. Science 2012;336(6081):555‒8. 链接1

[ 5 ] Liu L, Zhou C, Shu X, Li C, Zhao T, Lin W, et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat Nanotechnol 2021;‍16(3):277‒82. 链接1

[ 6 ] Schulz T, Lee K, Krüger B, Lo Conte R, Karnad GV, Garcia K, et al. Effective field analysis using the full angular spin‒orbit torque magnetometry dependence. Phys Rev B 2017;95(22):224409. 链接1

[ 7 ] Qiu X, Deorani P, Narayanapillai K, Lee KS, Lee KJ, Lee HW, et al. Angular and temperature dependence of current induced spin‒orbit effective fields in Ta/CoFeB/MgO nanowires. Sci Rep 2015;4(1):4491. 链接1

[ 8 ] Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Blügel S, et al. Symmetry and magnitude of spin‒orbit torques in ferromagnetic heterostructures. Nat Nanotechnol 2013;8(8):587‒93. 链接1

[ 9 ] Kong WJ, Ji YR, Zhang X, Wu H, Zhang QT, Yuan ZH, et al. Field-free spin Hall effect driven magnetization switching in Pd/Co/IrMn exchange coupling system. Appl Phys Lett 2016;109(13):132402. 链接1

[10] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp JT, Swagten HJM, et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat Commun 2016;7(1):10854. 链接1

[11] Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H. Magnetization switching by spin‒orbit torque in an antiferromagnet‒ferromagnet bilayer system. Nat Mater 2016;15(5):535‒41. 链接1

[12] Razavi SA, Wu D, Yu G, Lau YC, Wong KL, Zhu W, et al. Joule heating effect on field-free magnetization switching by spin‒orbit torque in exchange-biased systems. Phys Rev Appl 2017;7(2):024023. 链接1

[13] Huang KF, Wang DS, Lin HH, Lai CH. Engineering spin‒orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy. Appl Phys Lett 2015;107(23):232407. 链接1

[14] Hong J, Dong K, Bokor J, You L. Self-assembled single-digit nanometer memory cells. Appl Phys Lett 2018;113(6):062404. 链接1

[15] Chen JS, Hu JF, Lim BC, Lim YK, Liu B, Chow GM, et al. High coercive L10 FePt‒C (001) nanocomopsite films with small grain size for perpendicular recording media. J Appl Phys 2008;103(7):07F517. 链接1

[16] Liu L, Yu J, González-Hernández R, Li C, Deng J, Lin W, et al. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys Rev B 2020;101(22):220402. 链接1

[17] Sato T, Seki T, Kohda M, Ryu J, Gamou H, Karube S, et al. Evaluation of spin‒orbit torque in a L10-FePt single layer and a L10-FePt/Pt bilayer. Jpn J Appl Phys 2019;58(6):060915. 链接1

[18] Zheng SQ, Meng KK, Liu QB, Chen JK, Miao J, Xu XG, et al. Disorder dependent spin‒orbit torques in L10 FePt single layer. Appl Phys Lett 2020;117(24):242403. 链接1

[19] Tang M, Shen Ka, Xu S, Yang H, Hu S, Lü W, et al. Bulk spin torque-driven perpendicular magnetization switching in L10 FePt single layer. Adv Mater 2020;32(31):2002607. 链接1

[20] Dong KF, Li HH, Chen JS. Lattice mismatch-induced evolution of microstructural properties in FePt films. J Appl Phys 2013;113(23):233904. 链接1

[21] Finley J, Lee CH, Huang PY, Liu L. Spin‒orbit torque switching in a nearly compensated Heusler ferrimagnet. Adv Mater 2019;31(2):1805361. 链接1

[22] Hayashi M, Kim J, Yamanouchi M, Ohno H. Quantitative characterization of the spin‒orbit torque using harmonic Hall voltage measurements. Phys Rev B 2014;89(14):144425. 链接1

[23] Lee KS, Lee SW, Min BC, Lee KJ. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl Phys Lett 2013;102(11):112410. 链接1

相关研究