期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2022.06.018

基于自解耦三明治结构的横向运动栅场效应晶体管微机电系统微力传感器

a State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China
c Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
d State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150006, China
e Eleventh Research Institute, Sixth Academy of China Aerospace Science and Technology Co., Xi'an 710100, China
f Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
g Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999099, China

收稿日期: 2021-09-03 修回日期: 2022-05-05 录用日期: 2022-06-05 发布日期: 2022-08-13

下一篇 上一篇

摘要

本文介绍了一种基于横向运动栅极场效应晶体管(LMGFET)的新型微型力传感器。文中提出了一种用于小型LMGFET器件性能评估的电气模型,与以前的模型相比,其具有更高精度。由此设计了一种新型的三明治夹层结构,该结构由跨轴解耦Au-栅极阵列层和两个柔性光刻胶SU-8 层组成。通过所提出的双差分传感布置,LMGFET工作时受垂直干扰产生的输出电流被大大消除,所提出传感器的相对输出误差从4.53%(传统差分结构)降低到0.01%。本文还为所提出的传感器开发和模拟了一个可行的制造工艺过程。基于LMGFET的力传感器的灵敏度为4.65 μA∙nN−1,可与垂直可动栅极场效应晶体管(VMGFET)器件相媲美,器件的非线性度提高了0.78%,测量范围扩大为±5.10 μN。上述分析能够为LMGFET器件的电气和结构参数提供全面的设计优化指导,并证明了所提出的传感器在生物医学显微操作应用中具有出色的力传感潜力。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

参考文献

[ 1 ] Dostanic M, Windt LM, Stein JM, van Meer BJ, Bellin M, Orlova V, et al. A miniaturized EHT platform for accurate measurements of tissue contractile properties. J Microelectromech Syst 2020;29(5):881‒7. 链接1

[ 2 ] Nakahara K, Sakuma S, Kawahara M, Takahashi M, Arai F. Time-lapse mechanical characterization of zona pellucida using a cell carrier chip. J Microelectromech Syst 2018;27(3):464‒71. 链接1

[ 3 ] Corbin EA, Adeniba OO, Ewoldt RH, Bashir R. Dynamic mechanical measurement of the viscoelasticity of single adherent cells. Appl Phys Lett 2016;108(9):093701. 链接1

[ 4 ] Pu H, Chen H, Sun Yu, Liu Na, Yu J, Yang Y, et al. Micropipette aspiration of single cells for both mechanical and electrical characterization. IEEE Trans Biomed Eng 2019;66(11):3185‒91. 链接1

[ 5 ] Tsukagoshi T, Nguyen TV, Shoji KH, Takahashi H, Matsumoto K, Shimoyama I. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors. J Phys D Appl Phys 2018;51(14):145401. 链接1

[ 6 ] Pan P, Qu J, Zhang W, Dong X, Wei W, Ru C, et al. Robotic stimulation of freely moving Drosophila larvae using a 3D-printed micro force sensor. IEEE Sens J 2019;19(8):3165‒73. 链接1

[ 7 ] Zhang W, Pan P, Wang X, Chen Y, Rao Y, Liu X. Force-controlled mechanical stimulation and single-neuron fluorescence imaging of Drosophila larvae. IEEE Robot Autom Lett 2021;6(2):3736‒43. 链接1

[ 8 ] Wei Y, Xu Q. Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism. IEEE/ASME Trans Mechatron 2021;26(2):818‒29. 链接1

[ 9 ] Wei Y, Xu Q. A survey of force-assisted robotic cell microinjection technologies. IEEE Trans Autom Sci Eng 2019;16(2):931‒45. 链接1

[10] Cailliez J, Boudaoud M, Mohand-Ousaid A, Weill‒Duflos A, Haliyo S, Régnier S. Modeling and experimental characterization of an active MEMS based force sensor. J Micro-Bio Robot 2019;15(1):53‒64. 链接1

[11] Qu J, Zhang W, Jung A, Silva-Da Cruz S, Liu X. Microscale compression and shear testing of soft materials using an MEMS microgripper with two-axis actuators and force sensors. IEEE Trans Autom Sci Eng 2017;14(2):834‒43. 链接1

[12] Grech D, Tarazona A, De Leon MT, Kiang KS, Zekonyte J, Wood RJK, et al. A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties. Sens Actuators A Phys 2018;275:67‒74. 链接1

[13] Stavrov VT, Shulev AA, Hardalov CM, Todorov VM, Roussev IR. All-silicon microforce sensor for bio applications. In: Proceedings of SPIE Microtechnologies; 2013 Apr 24‒26; Grenoble, France. SPIE; 2013. p. 87630Y. 链接1

[14] Xie Y, Sun D, Liu C, Tse HY, Cheng SH. A force control approach to a robotassisted cell microinjection system. Int J Robot Res 2010;29(9):1222‒32. 链接1

[15] Xie Y, Zhou Y, Lin Y, Wang L, Xi W. Development of a microforce sensor and its array platform for robotic cell microinjection force measurement. Sensors 2016;16(4):483. 链接1

[16] Gao W, Zhao L, Jiang Z, Xia Y, Guo X, Zhao Z, et al. A novel MEMS force sensor based on laterally movable gate array field effect transistor (LMGAFET). In: Proceedings of 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 Apr 9‒12; Los Angeles, CA, USA. IEEE; 2017. p. 723‒7. 链接1

[17] Zang Y, Zhang F, Huang D, Gao X, Di C, Zhu D. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun 2015;6:6269. 链接1

[18] Ajmera PK, Song IH. Laterally movable gate FET (LMGFET) for on-chip integration of MEMS with electronics. In: Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials; 2001 Mar 4‒8; Newport Beach, CA, USA. SPIE; 2001. p. 30‒7. 链接1

[19] Gao W, Shakoor A, Xie M, Chen S, Guan Z, Zhao L, et al. Precise automated intracellular delivery using a robotic cell microscope system with threedimensional image reconstruction information. IEEE/ASME Trans Mechatron 2020;25(6):2870‒81. 链接1

[20] Gao W, Shakoor A, Zhao L, Jiang Z, Sun D. 3D image reconstruction of biological organelles with a robot-aided microscopy system for intracellular surgery. IEEE Robot Autom Lett 2019;4(2):231‒8. 链接1

[21] Kang HS, Lee KH, Yang DY, You BH, Song IH. Micro-accelerometer based on vertically movable gate field effect transistor. Nano-Micro Lett 2015;7(3): 282‒90. 链接1

[22] Aoyagi S, Suzuki M, Kogure J, Kong T, Taguchi R, Takahashi T, et al. Accelerometer using MOSFET with movable gate electrode: electroplating thick nickel proof mass on flexible Parylene beam for enhancing sensitivity. In: Proceedings of 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference; 2011 Jun 5‒9; Beijing, China. IEEE; 2011. p. 2030‒3. 链接1

[23] Coe DJ, English JM, Lindquist RG, Kaiser TJ. Model of a MEMS sensor using a common gate MOSFET differential amplifier. J Phys D Appl Phys 2006;39(20): 4353‒8. 链接1

[24] Song IH, Ajmera PK. A laterally movable gate field effect transistor. J Microelectromech Syst 2009;18(1):208‒16. 链接1

[25] Gao W, Jia C, Jiang Z, Zhou X, Zhao L, Sun D. The design and analysis of a novel micro force sensor based on depletion type movable gate field effect transistor. J Microelectromech Syst 2019;28(2):298‒310. 链接1

[26] Zhang A, Zhang L, Tang Z, Cheng X, Wang Y, Chen KJ, et al. Analytical modeling of capacitances for GaN HEMTs, including parasitic components. IEEE Trans Electron Dev 2014;61(3):755‒61. 链接1

[27] Bansal A, Paul BC, Roy K. An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans Comput Des Integr Circuits Syst 2006;25(12):2765‒74. 链接1

[28] Bao M, Yang H, Yin H, Shen S. Effects of electrostatic forces generated by the driving signal on capacitive sensing devices. Sens Actuators A Phys 2000;84(3):213‒9. 链接1

[29] El-Mansy YA. Analysis and characterization of the depletion-mode IGFET. IEEE J Solid-State Circuits 1980;15(3):331‒40. 链接1

[30] Sun SC, Plummer JD. Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE J Solid-State Circuits 1980;15(4): 562‒73. 链接1

[31] Arora N. MOSFET models for VLSI circuit simulation. Vienna: Springer Vienna; 1993. 链接1

[32] Coen RW, Muller RS. Velocity of surface carriers in inversion layers on silicon. Solid-State Electron 1980;23(1):35‒40. 链接1

[33] Ge C, Cretu E. A sacrificial-layer-free fabrication technology for MEMS transducer on flexible substrate. Sens Actuators A Phys 2019;286: 202‒10. 链接1

[34] Nagai M, Tanizaki K, Shibata T. Batch assembly of SU-8 movable components in channel under mild conditions for dynamic microsystems: application to biohybrid systems. J Microelectromech Syst 2019;28(3):419‒28. 链接1

[35] Ge C, Cretu E. Design and fabrication of SU-8 CMUT arrays through grayscale lithography. Sens Actuators A Phys 2018;280:368‒75. 链接1

[36] Vinje J, Beckwith KS, Sikorski P. Electron beam lithography fabrication of SU-8 polymer structures for cell studies. J Microelectromech Syst 2020;29(2):160‒9. 链接1

[37] Dai W, Lian K, Wang W. A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces. Microsyst Technol 2005;11 (7):526‒34. 链接1

[38] Dai W, Lian K, Wang W. Design and fabrication of a SU-8 based electrostatic microactuator. Microsyst Technol 2007;13(3‒4):271‒7.

[39] Microchem. Datasheet of SU-8 2025‒2075 [Internet]. Newton: Microchem; 2009 Sep 22 [cited 2021 Sep 3]. Available from: https://kayakuam.com/products/su-8-2000/. W. Gao, Z. Qiao, X. Hanet al. Engineering 21 (2023) 61‒74 74

相关研究