资源类型

期刊论文 138

年份

2023 3

2022 7

2021 8

2020 4

2019 16

2018 8

2017 5

2016 4

2015 7

2014 4

2013 6

2012 11

2011 9

2010 4

2009 3

2008 7

2007 7

2006 7

2005 4

2004 3

展开 ︾

关键词

疲劳 8

裂缝 6

疲劳寿命 5

微地震监测 4

S-N曲线 3

腐蚀 3

飞机结构 3

三点弯曲梁 2

疲劳性能 2

累积损伤 2

1860 MPa等级 1

300 M钢 1

4250 m 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

B级钢 1

CO2管道;离岸CCUS;海底管道;管道腐蚀;管道断裂;泄漏监测 1

DFS 1

展开 ︾

检索范围:

排序: 展示方式:

A dimensional analysis on asphalt binder fracture and fatigue cracking

Qian ZHAO, Zhoujing YE

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 201-206 doi: 10.1007/s11709-017-0402-1

摘要: Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckingham Theorem and -integral analysis based on classic fracture mechanics, to evaluate the fracture and fatigue on asphalt binder. It is discovered that the dimensional analysis could provide a new perspective to analyze the asphalt fracture and fatigue cracking mechanism.

关键词: Dimensional analysis     asphalt     fracture     fatigue cracking    

新型热轧低碳TRIP 钢的轧制工艺与疲劳性能

刘自权,谭小东,杨小龙,许云波,吴迪,王国栋

《中国工程科学》 2014年 第16卷 第1期   页码 54-58

摘要:

对比研究了现场不同工艺所得碳锰系车轮用钢及低碳低硅含磷铬系相变诱发塑性(TRIP)钢的力学性能、微观组织、疲劳性能和疲劳断口。结果显示,较传统碳锰系车轮用钢,新型TRIP 钢具有相当的屈服强度,抗拉强度明显提高了100~150 MPa,疲劳极限提高了50~140 MPa。疲劳极限随抗拉强度的提高有增大趋势。铁素体、贝氏体、残余奥氏体组织较铁素体、贝氏体、珠光体组织和铁素体、珠光体、马奥岛组织具有更好的疲劳性能。

关键词: 热轧     低碳TRIP钢     轧制工艺     疲劳性能     疲劳断口    

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 329-334 doi: 10.1007/s11465-012-0303-x

摘要:

The dynamic mechanical characteristics of excessively heavy-duty cutting were analyzed based on the cutting experiments with 2.25Cr-1Mo-0.25V steel used in hydrogenated cylindrical shells. By investigating the influence of dynamic mechanical characteristics on the tools’ failure in limited heavy-duty cutting processes, the model of dynamic shearing force in the cutting area was established. However, the experimental results showed that the dynamic shear flow stress in the cutting area greatly influenced the tools’ fatigue. The heavy-duty cutting tool was damaged in the form of a shearing fracture. Through a comprehensive analysis of the theory, the critical condition of the tools’ fracture under extreme loading was established.

关键词: extreme loading cutting     shear flow stress     dynamic cutting force     fatigue fracture    

Degree of bending of concrete-filled rectangular hollow section K-joints under balanced-axial loadings

Rui ZHAO; Yongjian LIU; Lei JIANG; Yisheng FU; Yadong ZHAO; Xindong ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第4期   页码 461-477 doi: 10.1007/s11709-022-0818-0

摘要: It has been found that the fatigue life of tubular joints is not only determined by the hot spot stress, but also by the stress distribution through the tube thickness represented as the degree of bending (DoB). Consequently, the DoB value should be determined to improve the accuracy of fatigue assessment for both stress-life curve and fracture mechanics methods. Currently, no DoB parametric formula is available for concrete-filled rectangular hollow section (CFRHS) K-joints, despite their wide use in bridge engineering. Therefore, a robust finite element (FE) analysis was carried out to calculate the DoB of CFRHS K-joints under balanced-axial loading. The FE model was developed and verified against a test result to ensure accuracy. A comprehensive parametric study including 190 models, was conducted to establish the relationships between the DoBs and four specific variables. Based on the numerical results, design equations to predict DoBs for CFRHS K-joints were proposed through multiple regression analysis. A reduction of 37.17% was discovered in the DoB, resulting in a decrease of 66.85% in the fatigue life. Inclusively, the CFRHS K-joints with same hot spot stresses, may have completely different fatigue lives due to the different DoBs.

关键词: fatigue assessment     K-joint     design equations     degree of bending     fracture mechanics    

Tests on impact effect of partial fracture at steel frame connections

CHEN Yiyi, BIAN Ruoning

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 295-301 doi: 10.1007/s11709-008-0049-z

摘要: Impact effect of sudden fracture at steel frame connections under severe earthquake or other extreme loads is presented in this paper. The relation of impulse caused by structural fracture to the release of inner force at the cracked location, the magnitude of the response to impact on the basis of one degree of freedom model, and the ratio of the peak value of response to natural period of the system are investigated. Two types of fracture tests were designed and carried out both on uniaxial steel bar tensioned and moment resistant steel frame model. It is proven that the response during the fracture process can be measured quite well using high-frequency data processing system. It is also revealed that the instant fracture of structural connection is characterized by progressive and partial fracture. Numerical evaluation of the impact effect of connection fracture is carried out.

关键词: structural fracture     natural     fracture     progressive     high-frequency    

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 411-418 doi: 10.1007/s11709-013-0228-4

摘要: The production of portland cement–the key ingredient in concrete–generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. ?This study presents the results of an experimental investigation that evaluates effect of fly ash replacement level on the fracture energy of concrete. This study includes four mixes with 0%, 30%, 50%, and 70% fly ash as a cement replacement. This experimental program consisted of 32 fracture beams to study the fracture behavior of concrete. The experimental fracture energies were compared with the fracture energy provisions of different design codes and also different analytical equations. Furthermore, statistical data analyses (parametric and non-parametric) were performed to evaluate whether or not there is any statistically significant difference between the experimental fracture energies of different mixes. Results of these statistical tests show that the mix with higher level of fly ash replacement level has higher fracture energy.

关键词: concrete     fracture energy     fly ash    

Computational modeling of fracture in concrete: A review

Luthfi Muhammad Mauludin, Chahmi Oucif

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 586-598 doi: 10.1007/s11709-020-0573-z

摘要: This paper presents a review of fracture modeling of concrete. The complex material, such as concrete, has been widely used in construction industries and become trending issue in the last decades. Based on comprehensive literature review, there are two main approaches considered to-date of concrete fracture modeling, such as macroscopic and micromechanical models. The purpose of this review is to provide insight comparison from different techniques in modeling of fracture in concrete which are available. In the first section, an overview of fracture modeling in general is highlighted. Two different approaches both of macroscopic and micromechanical models will be reviewed. As heterogeneity of concrete material is major concern in micromechanical-based concrete modeling, one section will discuss this approach. Finally, the summary from all of reviewed techniques will be pointed out before the future perspective is given.

关键词: concrete fracture     macroscopic     micromechanical     heterogeneity    

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 257-269 doi: 10.1007/s11709-017-0410-1

摘要: In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.

关键词: fatigue cracking     energy based     crack initiation     mechanistic approach     pavement analysis    

Assessment of fatigue life of remanufactured impeller based on FEA

Lei XU,Huajun CAO,Hailong LIU,Yubo ZHANG

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 219-226 doi: 10.1007/s11465-016-0394-x

摘要:

Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

关键词: remanufactured impeller     fatigue life     impeller failures     finite element analysis (FEA)    

南京长江第四大桥钢桥面铺装疲劳性能试验研究

詹俞,李国芬,王宏畅

《中国工程科学》 2013年 第15卷 第8期   页码 75-78

摘要:

结合南京长江第四大桥钢桥面铺装实体工程,开展铺装层混合料20 ℃疲劳性能试验。为了使试验结果能够更真实地反映主桥铺装的实际情况,直接采用主桥铺装使用的混合料成型试件,其中,带钢板复合梁试件为施工现场摊铺、碾压成型。室内试验对铺装结构单层采用劈裂疲劳试验,选择0.2、0.3、0.4、0.5、0.6这5个等级的应力水平,对组合结构采用带钢板复合梁疲劳试验,荷载水平为6 kN、7 kN、8 kN,并通过回归分析得到疲劳方程。

关键词: 道路工程     钢桥面铺装     疲劳性能     劈裂疲劳     疲劳方程    

Computational modeling of fracture in capsule-based self-healing concrete: A 3D study

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1337-1346 doi: 10.1007/s11709-021-0781-1

摘要: We present a three-dimensional (3D) numerical model to investigate complex fracture behavior using cohesive elements. An efficient packing algorithm is employed to create the mesoscale model of heterogeneous capsule-based self-healing concrete. Spherical aggregates are used and directly generated from specified size distributions with different volume fractions. Spherical capsules are also used and created based on a particular diameter, and wall thickness. Bilinear traction-separation laws of cohesive elements along the boundaries of the mortar matrix, aggregates, capsules, and their interfaces are pre-inserted to simulate crack initiation and propagation. These pre-inserted cohesive elements are also applied into the initial meshes of solid elements to account for fracture in the mortar matrix. Different realizations are carried out and statistically analyzed. The proposed model provides an effective tool for predicting the complex fracture response of capsule-based self-healing concrete at the meso-scale.

关键词: 3D fracture     self-healing concrete     spherical     cohesive elements     heterogeneous    

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 288-293 doi: 10.1007/s11709-018-0480-8

摘要: The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

关键词: strength     fracture     mechanics    

Contact fatigue life prediction of a bevel gear under spectrum loading

Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 123-132 doi: 10.1007/s11465-019-0556-8

摘要: Rolling contact fatigue (RCF) issues, such as pitting, might occur on bevel gears because load fluctuation induces considerable subsurface stress amplitudes. Such issues can dramatically affect the service life of associated machines. An accurate geometry model of a hypoid gear utilized in the main reducer of a heavy-duty vehicle is developed in this study with the commercial gear design software MASTA. Multiaxial stress–strain states are simulated with the finite element method, and the RCF life is predicted using the Brown–Miller–Morrow fatigue criterion. The patterns of fatigue life on the tooth surface are simulated under various loading levels, and the RCF curve is numerically generated. Moreover, a typical torque–time history on the driven axle is described, followed by the construction of program load spectrum with the rain flow method and the Goodman mean stress equation. The effects of various fatigue damage accumulation rules on fatigue life are compared and discussed in detail. Predicted results reveal that the Miner linear rule provides the most optimistic result among the three selected rules, and the Manson bilinear rule produces the most conservative result.

关键词: bevel gear     rolling contact fatigue (RCF)     multiaxial fatigue criterion     load spectrum     damage accumulation rule    

Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

Weiwei ZHANG,Xiaosong WANG,Zhongren WANG,Shijian YUAN

《机械工程前沿(英文)》 2015年 第10卷 第1期   页码 102-110 doi: 10.1007/s11465-015-0329-y

摘要:

Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

关键词: cylinder-crown integrated hydraulic press (CCIHP)     adaptive macro genetic algorithms (AMGA)     strain-controlled fatigue test    

Experimental research on ductile fracture criterion in metal forming

Song YU, Weiming FENG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 308-311 doi: 10.1007/s11465-011-0233-z

摘要:

Ductile fracture criterion is key limitation parameter in material forming. Accuracy predicting surface and internal failure in plastic deformation process affects on the technology design of workpiece and die greatly. Tension, compression, torsion and shearing test on 45# steel are utilized for providing the experimental values of the critical values at fracture, and 11 widely used ductile fracture criterion are selected to simulate the physical experiments and their relative accuracy for predicting and quantifying fracture initiation sites are investigated. The comparing results show that metal forming process under high triaxiality can be estimated successively using both Normalized Cockcroft-latham and the Brozzo ductile fracture criteria, but the Ayada and general Rice-Tracey model work very well for the low triaxiality cases.

关键词: ductile fracture criteria     metal forming process     material experiment     stress triaxiality    

标题 作者 时间 类型 操作

A dimensional analysis on asphalt binder fracture and fatigue cracking

Qian ZHAO, Zhoujing YE

期刊论文

新型热轧低碳TRIP 钢的轧制工艺与疲劳性能

刘自权,谭小东,杨小龙,许云波,吴迪,王国栋

期刊论文

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

期刊论文

Degree of bending of concrete-filled rectangular hollow section K-joints under balanced-axial loadings

Rui ZHAO; Yongjian LIU; Lei JIANG; Yisheng FU; Yadong ZHAO; Xindong ZHAO

期刊论文

Tests on impact effect of partial fracture at steel frame connections

CHEN Yiyi, BIAN Ruoning

期刊论文

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

期刊论文

Computational modeling of fracture in concrete: A review

Luthfi Muhammad Mauludin, Chahmi Oucif

期刊论文

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

期刊论文

Assessment of fatigue life of remanufactured impeller based on FEA

Lei XU,Huajun CAO,Hailong LIU,Yubo ZHANG

期刊论文

南京长江第四大桥钢桥面铺装疲劳性能试验研究

詹俞,李国芬,王宏畅

期刊论文

Computational modeling of fracture in capsule-based self-healing concrete: A 3D study

期刊论文

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

期刊论文

Contact fatigue life prediction of a bevel gear under spectrum loading

Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU

期刊论文

Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

Weiwei ZHANG,Xiaosong WANG,Zhongren WANG,Shijian YUAN

期刊论文

Experimental research on ductile fracture criterion in metal forming

Song YU, Weiming FENG

期刊论文