资源类型

期刊论文 1080

会议视频 69

会议信息 10

会议专题 2

年份

2024 3

2023 124

2022 192

2021 139

2020 94

2019 64

2018 59

2017 64

2016 39

2015 51

2014 38

2013 40

2012 31

2011 26

2010 32

2009 36

2008 26

2007 36

2006 10

2005 7

展开 ︾

关键词

3D打印 13

院士大会 9

人工智能 8

增材制造 8

绿色化工 8

抗击疫情 6

2020 5

工程管理 5

经济 5

4D打印 4

农业科学 4

医学 4

能源 4

N-糖基化 3

S-N曲线 3

大数据 3

空间可展开结构 3

营养健康 3

3D生物打印 2

展开 ︾

检索范围:

排序: 展示方式:

结构功能一体化的高性能陶瓷材料的研究与开发

江东亮

《中国工程科学》 2003年 第5卷 第2期   页码 35-39

摘要: 小型化、复合化、低成本制备等要求出发, 并就现有高性能陶瓷材料的基本性能和材料制备工艺上的优缺点进行了分析;简要介绍了碳化硅(SiC)陶瓷、 添加Nd的钇铝石榴子石(Nd-YAG)陶瓷、掺有稀土的氮化硅(RE-Si3N4)陶瓷等几种具有结构和功能一体化高性能陶瓷材料的优良性能,可能的应用以及目前存在的问题,特别是在基础研究和制备科学上今后应予以关注的方面。

关键词: 结构和功能一体化     高性能陶瓷     碳化硅     Nd-YAG     RE-Si3N4    

Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition

Huan Liu, Zhen Ma

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 586-593 doi: 10.1007/s11705-017-1659-6

摘要: Hexagonal CePO nanorods were prepared by a precipitation method and hexagonal CePO nanowires were prepared by hydrothermal synthesis at 150 °C. Rh(NO ) was then used as a precursor for the impregnation of Rh O onto these CePO materials. The Rh O supported on the CePO nanowires was much more active for the catalytic decomposition of N O than the Rh O supported on CePO nanorods. The stability of both catalysts as a function of time on stream was studied and the influence of the co-feed (CO , O , H O or O /H O) on the N O decomposition was also investigated. The samples were characterized by N adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron microscopy, hydrogen temperature-programmed reduction, oxygen temperature-programmed desorption, and CO temperature-programmed desorption in order to correlate the physicochemical and catalytic properties.

关键词: Rh2O3     CePO4     N2O decomposition    

Preparation and lithium storage performances of g-C

Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 759-766 doi: 10.1007/s11708-020-0810-0

摘要: As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C N /Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C N /Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C N /Si electrode is evaluated, the initial discharge capacity of g-C N /Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C N /Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.

关键词: magnesium thermal reduction     g-C3N4/Si nanocomposites     volume expansion     electroconductivity     lithium-ion battery    

Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobactergeneration from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3

Guanghong ZHENG, Zhuhui KANG, Yifan QIAN, Lei WANG,

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 387-392 doi: 10.1007/s11783-009-0154-9

摘要: Haifa RAJHI,Daniel PUYOL,Mirna C. MARTÍNEZ,Emiliano E. DÍAZ,José L. SANZ. [J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.Yongtao LV,Xuan CHEN,Lei WANG,Kai JU,Xiaoqiang CHEN,Rui MIAO,Xudong WANG. [J]. Front. Environ. Sci. Eng., 2016, 10(2): 390-398.Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ. [J]. Front. Environ. Sci. Eng., 2015, 9(3): 528-533.Wei LI, Xiaowen DING, Min LIU, Yuewen GUO, Lei LIU. [J]. Front Envir Sci Eng, 2012, 6(6): 892-900.Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. [J]. Front Envir Sci Eng, 2012, 6(1): 125-130.Hailong LIN, Weiguang LI, Changhong GUO, Sihang QU, Nanqi REN. [J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.Daijun ZHANG, Cui BAI, Ting TANG, Qing YANG. [J]. Front Envir Sci Eng Chin, 2011, 5(2): 291-297.Yanhui ZHAN, Jianwei LIN, Yanling QIU, Naiyun GAO, Zhiliang ZHU. [J]. Front Envir Sci Eng Chin, 2011, 5(1): 65-75.Rongchang WANG, Xinmin ZHAN, Yalei ZHANG, Jianfu ZHAO. [J]. Front Envir Sci Eng Chin, 2011, 5(1): 48-56.Bo WANG, Wei WAN, Jianlong WANG, . [J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.GUO Jinsong, YANG Guohong, FANG Fang, QIN Yu. [J]. Front.Environ.Sci.Eng., 2008, 2(4): 439-445.GENG Bing, ZHU Yanfang, JIN Zhaohui, LI Tielong, KANG Haiyan, WANG Shuaima. [J]. Front.Environ.Sci.Eng., 2007, 1(3): 357-361.WU Deyi, HU Zhanbo, WANG Xinze, HE Shengbing, KONG Hainan. [J]. Front.Environ.Sci.Eng., 2007, 1(2): 213-220.XU Zhengyong, YANG Zhaohui, ZENG Guangming, XIAO Yong, DENG Jiuhua. [J]. Front.Environ.Sci.Eng., 2007, 1(1): 43-48.

关键词: ammonium     anoxygenic phototrophic bacterium     biohydrogen     glutamine auxotrophic     tofu wastewater    

Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward

《能源前沿(英文)》 doi: 10.1007/s11708-023-0881-9

摘要: Sunlight-powered water splitting presents a promising strategy for converting intermittent and virtually unlimited solar energy into energy-dense and storable green hydrogen. Since the pioneering discovery by Honda and Fujishima, considerable efforts have been made in this research area. Among various materials developed, Ga(X)N/Si (X = In, Ge, Mg, etc.) nanoarchitecture has emerged as a disruptive semiconductor platform to split water toward hydrogen by sunlight. This paper introduces the characteristics, properties, and growth/synthesis/fabrication methods of Ga(X)N/Si nanoarchitecture, primarily focusing on explaining the suitability as an ideal platform for sunlight-powered water splitting toward green hydrogen fuel. In addition, it exclusively summarizes the recent progress and development of Ga(X)N/Si nanoarchitecture for photocatalytic and photoelectrochemical water splitting. Moreover, it describes the challenges and prospects of artificial photosynthesis integrated device and system using Ga(X)N/Si nanoarchitectures for solar water splitting toward hydrogen.

关键词: Ga(X)N/Si nanoarchitecture     artificial photosynthesis     water splitting     solar toward hydrogen    

基于自适应采样的鲁棒精确最优传输映射 Research Articles

王应时1,郑晓朋2,陈伟2,3,齐鑫4,任玉雪3,雷娜2,3,顾险峰4

《信息与电子工程前沿(英文)》 2021年 第22卷 第9期   页码 1207-1220 doi: 10.1631/FITEE.2000250

摘要: 对于平方距离传输成本,最优传输映射是Brenier势的梯度,可通过求解Monge-Ampère方程得到。此外,最优传输映射可归结为几何凸优化问题。Monge-Ampère方程高度非线性,在求解过程中,中间解需要始终保持严格凸。特别地,离散解的精确性严重依赖于目标测度的采样。

关键词: 最优传输;Monge-Ampère方程;自适应采样    

Recent advances in special morphologic photocatalysts for NO removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1573-0

摘要:

● Systematic information of recent progress in photocatalytic NO x removal is provided.

关键词: NOx removal     Photocatalyst     Graphene     C3N4     Bi-based compounds.    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar

Fanying MENG,Jinning LIU,Leilei SHEN,Jianhua SHI,Anjun HAN,Liping ZHANG,Yucheng LIU,Jian YU,Junkai ZHANG,Rui ZHOU,Zhengxin LIU

《能源前沿(英文)》 2017年 第11卷 第1期   页码 78-84 doi: 10.1007/s11708-016-0435-5

摘要: n-type CZ-Si wafers featuring longer minority carrier lifetime and higher tolerance of certain metal contamination can offer one of the best Si-based solar cells. In this study, Si heterojuction (SHJ) solar cells which was fabricated with different wafers in the top, middle and tail positions of the ingot, exhibited a stable high efficiency of>22% in spite of the various profiles of the resistivity and lifetime, which demonstrated the high material utilization of n-type ingot. In addition, for effectively converting the sunlight into electrical power, the pyramid size, pyramid density and roughness of surface of the Cz-Si wafer were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the dependence of SHJ solar cell open-circuit voltage on the surface topography was discussed, which indicated that the uniformity of surface pyramid helps to improve the open-circuit voltage and conversion efficiency. Moreover, the simulation revealed that the highest efficiency of the SHJ solar cell could be achieved by the wafer with a thickness of 100 µm. Fortunately, over 23% of the conversion efficiency of the SHJ solar cell with a wafer thickness of 100 µm was obtained based on the systematic optimization of cell fabrication process in the pilot production line. Evidently, the large availability of both n-type ingot and thinner wafer strongly supported the lower cost fabrication of high efficiency SHJ solar cell.

关键词: n-type Cz-Si     thinner wafer     surface texture     high efficiency     SHJ solar cell    

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1183-7

摘要: CW-Fe allowed a high-performance of NO3‒-N removal at the COD/N ratio of 0. Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. The application of s-Fe0 contributed to TIN removal in wetland mesocosm. s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3‒-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3‒-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3‒-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3‒-N reduction characteristics of s-Fe0 in a wetland mesocosm.

关键词: Sponge iron     Wetland mesocosm     Electronic donor     Denitrification     COD/N ratio    

NiCo2O4@quinone-rich N–C core–shell nanowires as composite electrode for electric double layer capacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 373-386 doi: 10.1007/s11705-022-2223-6

摘要: The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability. Considering the close connection between their performance and the amount of carbon material loaded on the electrodes, in this work, NiCo2O4 nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction. Then, the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo2O4 nanowires, and the obtained composite was used as electrode for electric double layer capacitor. The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF∙cm–2 at the current density of 1 mA∙cm–2. The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW∙h∙cm–3 at a power density of 180 mW∙cm–3. The assembled symmetric capacitor exhibited a capacitance retention of 88.96% after 10000 charge/discharge cycles at the current density of 20 mA∙cm–2. These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.

关键词: carbon cloth     NiCo2O4 nanowires     core−shell structure     quinone-rich     electric double layer capacitor    

POCl3 diffusion for industrial Si solar cell emitter formation

Hongzhao LI,Kyung KIM,Brett HALLAM,Bram HOEX,Stuart WENHAM,Malcolm ABBOTT

《能源前沿(英文)》 2017年 第11卷 第1期   页码 42-51 doi: 10.1007/s11708-016-0433-7

摘要: POCl diffusion is currently the standard method for industrial n-type emitter fabrication. In this study, we present the impact of the following processing parameters on emitter formation and electrical performance: deposition gas flow ratio, drive-in temperature and duration, drive-in O flow rate, and thermal oxidation temperature. By showing their influence on the emitter doping profile and recombination activity, we provide an overall strategy for improving industrial POCl tube diffused emitters.

关键词: POCl3 diffusion     emitter recombination     oxidation     silicon    

Inexpensive synthesis of a high-performance Fe

Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 405-416 doi: 10.1007/s11705-016-1579-x

摘要: A sol-gel technique has been developed for the synthesis of a magnetite-silica-titania (Fe O -SiO -TiO ) tertiary nanocomposite with improved photocatalytic properties based on the use of inexpensive titania and silica precursors. The exceptional photocatalytic activity of the resulting materials was demonstrated by using them to photocatalyze the degradation of methylene blue solution. The best formulation achieved 98% methylene blue degradation. An interesting feature of the present work was the ability to magnetically separate and reuse the catalyst. The efficiency of the catalyst remained high during two reuses. The synthesized nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultra-violet-visible spectroscopy, diffuse reflectance spectroscopy, and thermogravimetric analysis. XRD analysis revealed the formation of multicrystalline systems of cubic magnetite and anatase titania crystals. SEM and TEM characterization revealed well-developed and homogeneously dispersed particles of size less than 15 nm. FTIR spectra confirmed the chemical interaction of titania and silica. It was further noticed that the optical properties of the prepared materials were dependent on the relative contents of their constituent metal oxides.

关键词: sol-gel     photocatalysis     magnetic recovery     TiO2     Fe3O4     SiO2    

Synthesis and anticancer activity of (+)-nopinone-based 2-amino-3-cyanopyridines

Shengliang LIAO,Shibin SHANG,Minggui SHEN,Xiaoping RAO,Hongyan SI,Jie SONG,Zhanqian SONG

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 335-340 doi: 10.15302/J-FASE-2015079

摘要: Twelve (+)-nopinone-based 2-amino-3-cyanopyridines 4a–l were synthesized from (–)-β-pinene. The structures of these compounds were characterized by FT-IR, H NMR, and ESI-MS. All the compounds were tested for their anticancer activity against lung cancer cell line A549, gastric cancer cell line MKN45 and breast cancer cell line MCF7 by MTT method, respectively. The results showed that compounds 4f, 4j and 4k had promising anticancer activity against these cancer cell lines, in particular, compound 4f exhibited broad-spectrum and highly efficient anticancer activity against cell lines A549, MKN45 and MCF7 with IC of 23.78, 67.61 and 53.87 µmol·L , respectively. The preliminary analysis of the structure activity relationship implied that the Br or Cl substituted group of the benzene ring in these derivatives significantly contributed to the anticancer activity.

关键词: b-pinene     nopinone     synthesis     2-amino-3-cyanopyridine     anticancer    

Multi-functional 3D N-doped TiO

Zijian Cui, Kaiyue Zhang, Guangyu Xing, Yaqing Feng, Shuxian Meng

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 395-404 doi: 10.1007/s11705-017-1643-1

摘要: Three-dimensional TiO microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m ·g which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).

关键词: DSSCs     N doping     scattering layer     electron lifetime    

标题 作者 时间 类型 操作

结构功能一体化的高性能陶瓷材料的研究与开发

江东亮

期刊论文

Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition

Huan Liu, Zhen Ma

期刊论文

Preparation and lithium storage performances of g-C

Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG

期刊论文

Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobactergeneration from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3

Guanghong ZHENG, Zhuhui KANG, Yifan QIAN, Lei WANG,

期刊论文

Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward

期刊论文

基于自适应采样的鲁棒精确最优传输映射

王应时1,郑晓朋2,陈伟2,3,齐鑫4,任玉雪3,雷娜2,3,顾险峰4

期刊论文

Recent advances in special morphologic photocatalysts for NO removal

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity

期刊论文

High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar

Fanying MENG,Jinning LIU,Leilei SHEN,Jianhua SHI,Anjun HAN,Liping ZHANG,Yucheng LIU,Jian YU,Junkai ZHANG,Rui ZHOU,Zhengxin LIU

期刊论文

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

期刊论文

NiCo2O4@quinone-rich N–C core–shell nanowires as composite electrode for electric double layer capacitor

期刊论文

POCl3 diffusion for industrial Si solar cell emitter formation

Hongzhao LI,Kyung KIM,Brett HALLAM,Bram HOEX,Stuart WENHAM,Malcolm ABBOTT

期刊论文

Inexpensive synthesis of a high-performance Fe

Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim

期刊论文

Synthesis and anticancer activity of (+)-nopinone-based 2-amino-3-cyanopyridines

Shengliang LIAO,Shibin SHANG,Minggui SHEN,Xiaoping RAO,Hongyan SI,Jie SONG,Zhanqian SONG

期刊论文

Multi-functional 3D N-doped TiO

Zijian Cui, Kaiyue Zhang, Guangyu Xing, Yaqing Feng, Shuxian Meng

期刊论文