资源类型

期刊论文 6

年份

2023 1

2021 1

2020 2

2018 1

2003 1

关键词

丙烯酰胺 1

反相微乳液聚合 1

机理 1

模型 1

检索范围:

排序: 展示方式:

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 893-905 doi: 10.1007/s11705-022-2290-8

摘要: A novel alginate/poly(acrylic acid/acrylamide) double-network hydrogel composite with silver nanoparticles was successfully fabricated using the sol–gel method. The presence of carboxyl and amide groups in the network structure provided abundant active sites for complexing silver ions, facilitating the in situ reduction and confinement of silver nanoparticles. In batch experiments, the optimal silver loading was 20%, and 5 mmol·L–1 of p-nitrophenol was completely degraded in 113 s with a rate constant value of 4.057 × 10−2 s–1. In the tap water system and simulated seawater system, the degradation time of p-nitrophenol at the same concentration was 261 and 276 s, respectively, with a conversion rate above 99%. In the fixed-bed experiment, the conversion rate remained above 74% after 3 h at a flowing rate of 7 mL·min–1. After 8 cycling tests, the conversion rate remained at 98.7%. Moreover, the catalyst exhibited outstanding performance in the degradation experiment of four typical organic dyes.

关键词: double-network hydrogel     dye degradation     silver nanoparticles     alginate    

反相微乳液聚合机理及模型化处理

李晓,张卫英,袁惠根

《中国工程科学》 2003年 第5卷 第1期   页码 69-73

摘要:

在阐述反相微乳液聚合液滴成核及粒子增长机理的基础上,提出了丙烯酰胺反相微乳液聚合过程的物理模式,并对反相微乳液聚合模型化处理时的关键问题作了扼要讨论。

关键词: 反相微乳液聚合     机理     模型     丙烯酰胺    

Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI

Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1229-x

摘要: Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. Removal process reached equilibrium within 30 min and was minimally affected by pH. Elimination of Cr(VI) was promoted by coexisting CR. Adsorption process of CR was less influenced by the presence of Cr(VI). Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.

关键词: Chromate     Dye adsorption     Simultaneous removal     Cross-linking method     Amino functionalization    

Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food

Jing TENG, Xiaoqian HU, Ningping TAO, Mingfu WANG

《农业科学与工程前沿(英文)》 2018年 第5卷 第3期   页码 321-329 doi: 10.15302/J-FASE-2017182

摘要:

As one of the dominant reactions occurring during thermal treatment of food, the Maillard reaction not only leads to the formation of aroma, browning color and taste compounds, but also contributes to the formation of some unpleasant toxic substances including acrylamide, heterocyclic amines and advanced glycation end products. Polyphenols, one of the most abundant antioxidants in the human diet, are contained in different kinds of foods. In this review, some recent studies on the impact of dietary polyphenols on the formation of acrylamide, heterocyclic amines and advanced glycation end products formed during the Maillard reaction are summarized, including the research work conducted with both chemical model systems and real food model systems; the possible inhibitory mechanisms of different polyphenols are also summarized and discussed in this review. Basically we found that some dietary polyphenols not only scavenge free radicals, but also react with reactive carbonyl species, thus lowering the formation of toxic Maillard reaction products. This review provides a useful theoretical foundation for the application of polyphenols in food safety, and suggests some directions for further study of natural products as inhibitors against the formation of toxic substances in thermally processed food.

关键词: advanced glycation end products     acrylamide     food safety     heterocyclic amine     Maillard reaction     polyphenols    

Cement mortar with enhanced flexural strength and durability-related properties using

Qing LIU, Renjun LIU, Qiao WANG, Rui LIANG, Zongjin LI, Guoxing SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 99-108 doi: 10.1007/s11709-021-0721-0

摘要: The low flexural strength and high brittleness of cementitious materials impair their service life in building structures. In this study, we developed a new polymer-modified mortar by polymerization of acrylamide (AM) monomers during the cement setting, which enhanced the flexural and durable performances of mortars. The mechanical properties, micro-and-pore structures, hydrated products, interactions between cement hydrates and polyacrylamide (PAM), and durability-related properties of the mortars were investigated comprehensively. Mortars with 5% PAM exhibited the best performance in terms of flexural strength among all the mixtures. The mechanical strength of cement pastes modified by polymerization of AM monomers was significantly superior to those modified by PAM. The chemical interactions between the polymer molecules and cement hydrates together with the formation of polymer films glued the cement hydrates and polymers and resulted in an interpenetrating network structure, which strengthened the flexural strength. Reductions in porosity and calcium hydroxide content and improvement in capillary water absorption were achieved with the addition of PAM. Finally, the chloride resistance was significantly enhanced with the incorporation of PAM.

关键词: acrylamide     in situ polymerization     interaction     porosity     durability    

Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration

Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1277-2

摘要: Abstract • PAM degradation in thermophilic AD in comparison with mesophilic AD. • PAM degradation and its impact on thermophilic and mesophilic AD. • Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD. • PAM degradation and microbial community analysis in thermophilic and mesophilic AD. Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.

关键词: Polyacrylamide (PAM) degradation     Acrylamide (AM)     Mesophilic anaerobic digestion     Thermophilic anaerobic digestion     Methane production    

标题 作者 时间 类型 操作

Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient

期刊论文

反相微乳液聚合机理及模型化处理

李晓,张卫英,袁惠根

期刊论文

Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI

Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan

期刊论文

Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food

Jing TENG, Xiaoqian HU, Ningping TAO, Mingfu WANG

期刊论文

Cement mortar with enhanced flexural strength and durability-related properties using

Qing LIU, Renjun LIU, Qiao WANG, Rui LIANG, Zongjin LI, Guoxing SUN

期刊论文

Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration

Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang

期刊论文