资源类型

期刊论文 91

会议视频 2

年份

2024 11

2023 16

2022 7

2021 4

2020 4

2019 6

2018 7

2017 6

2016 2

2015 5

2013 5

2012 1

2010 2

2008 3

2007 4

展开 ︾

关键词

炎症 2

营养健康 2

CPAL 1

Caco-2细胞 1

II 型聚酮 1

N-糖基化 1

REC114 1

ZNF438 1

不孕症 1

中国制造 1

中链脂肪酸 1

乳杆菌 1

云雀霉素 1

代谢 1

代谢性疾病 1

代谢特征 1

代谢紊乱 1

传染病 1

健康 1

展开 ︾

检索范围:

排序: 展示方式:

High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome

Heng Fang, Aihua Zhang, Xiaohang Zhou, Jingbo Yu, Qi Song, Xijun Wang

《医学前沿(英文)》 2020年 第14卷 第5期   页码 651-663 doi: 10.1007/s11684-019-0709-5

摘要: High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites. This study used the established Yang Huang syndrome (YHS) mouse model to evaluate the efficacy of geniposide (GEN). Urine metabolic data were quantified by ultra-performance liquid chromatography–tandem mass spectrometry. The non-target screening of the massive biological information dataset was performed, and a total of 33 metabolites, including tyramine glucuronide, aurine, and L-cysteine, were identified relating to YHS. These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin. Interestingly, they were completely reversed by GEN. While, as the auxiliary technical means, we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part. We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology. This study is the first to report that GEN indirectly regulates the metabolite “tyramine glucuronide” through its direct effect on the target heme oxygenase 1 . Meanwhile, heme oxygenase-1, a prediction of network pharmacology, was the confirmed metabolic enzyme of phase I reaction in hepatocytes. Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine (TCM) syndrome.

关键词: metabolomics     liquid chromatography-mass spectrometry     metabolites     metabolic pathways    

Regulation of T cell immunity by cellular metabolism

null

《医学前沿(英文)》 2018年 第12卷 第4期   页码 463-472 doi: 10.1007/s11684-018-0668-2

摘要:

T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific metabolic programs are tightly controlled to mediate T cell immune responses, and alterations in T cell metabolism may result in many immunological disorders. In this review, we will summarize the main T cell metabolic pathways and the important factors participating in T cell metabolic programming during T cell homeostasis, differentiation, and function.

关键词: T cell immunity     metabolic pathways     nutrient uptake     metabolic checkpoints    

denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolicpathways

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1433-3

摘要:

• Short-term effect of the pyridine exposure on the SAD process was investigated.

关键词: Anammox     Inhibition     Metabolic pathway     Microbial community     Pyridine     SAD    

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1700-1712 doi: 10.1007/s11705-022-2207-6

摘要: The chain length and hydrocarbon type significantly affect the production of light olefins during the catalytic pyrolysis of naphtha. Herein, for a better catalyst design and operation parameters optimization, the reaction pathways and equilibrium yields for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins were analyzed thermodynamically. The results revealed that the thermodynamically favorable reaction pathways for n/iso-paraffins and cyclo-paraffins were the protolytic and hydrogen transfer cracking pathways, respectively. However, the formation of light paraffin severely limits the maximum selectivity toward light olefins. The dehydrogenation cracking pathway of n/iso-paraffins and the protolytic cracking pathway of cyclo-paraffins demonstrated significantly improved selectivity for light olefins. The results are thus useful as a direction for future catalyst improvements, facilitating superior reaction pathways to enhance light olefins. In addition, the equilibrium yield of light olefins increased with increasing the chain length, and the introduction of cyclo-paraffin inhibits the formation of light olefins. High temperatures and low pressures favor the formation of ethylene, and moderate temperatures and low pressures favor the formation of propylene. n-Hexane and cyclohexane mixtures gave maximum ethylene and propylene yield of approximately 49.90% and 55.77%, respectively. This work provides theoretical guidance for the development of superior catalysts and the selection of proper operation parameters for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins from a thermodynamic point of view.

关键词: naphtha     catalytic pyrolysis     reaction pathway     equilibrium yield    

New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1527-6

摘要:

• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB.

关键词: Waste activated sludge (WAS)     Volatile fatty acids (VFA)     Surfactant types     Functional microorganisms     Metabolic activity upregulation    

Seasonal variations of transport pathways andpotential sources of PM

Yuan Chen, Shaodong Xie, Bin Luo

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-018-1009-z

摘要: Seasonal pattern of transport pathways and potential sourcesof PM in Chengdu during 2012–2013were investigated based on hourly PM data,backward trajectories, clustering analysis, potential source contributionfunction (PSCF), and concentration-weighted trajectory (CWT) method.The annual hourly mean PM concentrationin Chengdu was 97.4 mg·m . 5, 5, 5 and 3 mean clusters were generatedin four seasons, respectively. Short-distance air masses, which travelledwithin the Sichuan Basin with no specific source direction and relativelyhigh PM loadings (>80 mg·m ) appearedas important pathways in all seasons. These short pathways indicatedthat emissions from both local and surrounding regions of Chengducontributed significantly to PM pollution.The cities in southern Chengdu were major potential sources with PSCF>0.6and CWT>90 mg·m . The northeastern pathway prevailed throughoutthe year with higher frequency in autumn and winter and lower frequencyin spring and summer. In spring, long-range transport from southernXinjiang was a representative dust invasion path to Chengdu, and theCWT values along the path were 30-60 mg·m . Long-range transportwas also observed in autumn from southeastern Xinjiang along a northwesterlypathway, and in winter from the Tibetan Plateau along a westerly pathway.In summer, the potential source regions of Chengdu were smaller thanthose in other seasons, and no long-range transport pathway was observed.Results of PSCF and CWT indicated that regions in Qinghai and Tibetcontributed to PM pollution in Chengdu aswell, and their CWT values increased to above 30 mg·m in winter.

关键词: Transport pathway     Backwardtrajectory     Clustering analysis     Potential source     Chengdu    

ROLE OF NITROGEN SENSING AND ITS INTEGRATIVE SIGNALING PATHWAYS IN SHAPING ROOT SYSTEM ARCHITECTURE

《农业科学与工程前沿(英文)》 2022年 第9卷 第3期   页码 316-332 doi: 10.15302/J-FASE-2022441

摘要:

● The Green Revolution broadened the trade-off between yield and nitrogen-use efficiency.

关键词: Nitrogen     root system architecture     phytohormone     crosstalk     nitrogen-use efficiency     breeding strategy    

Metabolic hypertension: concept and practice

null

《医学前沿(英文)》 2013年 第7卷 第2期   页码 201-206 doi: 10.1007/s11684-013-0264-4

摘要:

Hypertension is a serious public health problem worldwide. More than 60% of the risk factors for hypertension are associated with metabolic disturbances. Metabolic abnormalities increase the risk for hypertension and cause high blood pressure. Improving metabolic disturbances is beneficial for hypertension treatment. Due to the importance of metabolic abnormalities in the pathogenesis of hypertension, we propose a concept of metabolic hypertension. In this review, we discuss and review the clinical types, pathogenesis, risk evaluation and management of metabolic hypertension. Elucidation of the mechanism of metabolic hypertension should facilitate the design of novel pharmacotherapeutics and dedicated antihypertensive manipulations.

关键词: hypertension     cardiometabolic risk factors     metabolic abnormalities    

Energy transition toward carbon-neutrality in China: Pathways, implications and uncertainties

《工程管理前沿(英文)》 2022年 第9卷 第3期   页码 358-372 doi: 10.1007/s42524-022-0202-8

摘要: Achieving carbon neutrality in China before 2060 requires a radical energy transition. To identify the possible transition pathways of China’s energy system, this study presents a scenario-based assessment using the Low Emissions Analysis Platform (LEAP) model. China could peak the carbon dioxide (CO2) emissions before 2030 with current policies, while carbon neutrality entails a reduction of 7.8 Gt CO2 in emissions in 2060 and requires an energy system overhaul. The assessment of the relationship between the energy transition and energy return on investment (EROI) reveals that energy transition may decrease the EROI, which would trigger increased energy investment, energy demand, and emissions. Uncertainty analysis further shows that the slow renewable energy integration policies and carbon capture and storage (CCS) penetration pace could hinder the emission mitigation, and the possible fossil fuel shortage calls for a much rapid proliferation of wind and solar power. Results suggest a continuation of the current preferential policies for renewables and further research and development on deployment of CCS. The results also indicate the need for backup capacities to enhance the energy security during the transition.

关键词: carbon neutrality     energy transition     uncertainty     EROI     LEAP    

Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways

《能源前沿(英文)》 doi: 10.1007/s11708-024-0949-1

摘要: Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber−Bosch (H−B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H−B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasma-assisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.

关键词: plasma catalysis     nitrogen fixation     ammonia synthesis     hydrogen storage     catalyst     carbon neutralization    

Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes

null

《医学前沿(英文)》 2015年 第9卷 第2期   页码 139-145 doi: 10.1007/s11684-015-0377-z

摘要:

In obesity, chronic inflammation is believed to induce insulin resistance and impairs adipose tissue function. Although this view is supported by a large body of literature, it has been challenged by growing evidence that pro-inflammatory cytokines may favor insulin sensitivity through induction of energy expenditure. In this review article, interleukin 15 (IL-15) is used as a new example to explain the beneficial effects of the pro-inflammatory cytokines. IL-15 is secreted by multiple types of cells including macrophages, neutrophils and skeletal muscle cells. IL-15 expression is induced in immune cells by endotoxin and in muscle cells by physical exercise. Its transcription is induced by transcription factor NF-κB. IL-15 binds to its receptor that contains three different subunits (α, β and γ) to activate JAK/STAT, PI3K/Akt, IKK/NF-κB and JNK/AP1 pathways in cells. In the regulation of metabolism, IL-15 reduces weight gain without inhibiting food intake in rodents. IL-15 suppresses lipogenesis, stimulates brown fat function, improves insulin sensitivity through weight loss and energy expenditure. In human, circulating IL-15 is negatively associated with body weight. In the immune system, IL-15 stimulates proliferation and differentiation of T cells, NK cells, monocytes and neutrophils. In the anti-obesity effects of IL-15, T cells and NK cells are not required, but leptin receptor is required. In summary, evidence from human and rodents supports that the pro-inflammatory cytokine IL-15 may enhance energy expenditure to protect the body from obesity and type 2 diabetes. The mechanism of IL-15 action remains to be fully uncovered in the regulation of energy expenditure.

关键词: inflammation     obesity     cytokine     energy expenditure     insulin resistance    

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1715-z

摘要:

● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress.

关键词: Extracellular Cr(VI) reduction     Electron transfer     Anammox     Hydrazine     Cr(VI) inhibition    

Assembly of biosynthetic pathways in

Lidan Ye,Xiaomei Lv,Hongwei Yu

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 126-132 doi: 10.1007/s11705-016-1597-8

摘要: A robust and versatile tool for multigene pathway assembly is a key to the biosynthesis of high-value chemicals. Here we report the rapid construction of biosynthetic pathways in using a marker recyclable integrative toolbox (pUMRI) developed in our research group, which has features of ready-to-use, convenient marker recycling, arbitrary element replacement, shuttle plasmid, auxotrophic marker independence, GAL regulation, and decentralized assembly. Functional isoprenoid biosynthesis pathways containing 4–11 genes with lengths ranging from ~10 to ~22 kb were assembled using this toolbox within 1–5 rounds of reiterative recombination. In combination with GAL-regulated metabolic engineering, high production of isoprenoids (e.g., 16.3 mg?g dcw carotenoids) was achieved. These results demonstrate the wide range of application and the efficiency of the pUMRI toolbox in multigene pathway construction of .

关键词: pathway assembly     toolbox     reiterative recombination     S. cerevisiae     biosynthesis    

Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

null

《医学前沿(英文)》 2013年 第7卷 第1期   页码 25-30 doi: 10.1007/s11684-013-0244-8

摘要:

Fibroblast growth factor 21 (FGF21) is a member of the fibroblast growth factor family. It actually functions as endocrine hormones but does not regulate cell growth and differentiation. It is demonstrated that FGF21 acts on multiple tissue to coordinate carbohydrate and lipid metabolism, including enhancing insulin sensitivity, decreasing triglyceride concentrations, causing weight loss, ameliorating obesity-associated hyperglycemia and hyperlipidemia. Moreover, FGF21 also plays important roles in some physiological processes, such as fasting and feeding, growth hormone axis and thermogenic function of brown adipose tissue. Clinical relevance of FGF21 in humans is still unclear, and the basis and consequences of increased FGF21 in metabolic disease remain to be determined. Both the pharmacological actions and physiological roles make FGF21 attractive drug candidates for treating metabolic disease, but some questions remain to be answered. This article concentrates on recent advances in our understanding of FGF21.

关键词: FGF21     metabolism     pharmacology     physiology     clinical relevance    

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1217-1

摘要: The SRAO phenomena tended to occur only under certain conditions. High amount of biomass and non-anaerobic condition is requirement for SRAO. Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. AOB and AnAOB are mainly responsible for ammonium conversion. Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.

关键词: Anammox bacteria     Autotrophic     Biological conversion     Sulfate reducing ammonium oxidation (SRAO)    

标题 作者 时间 类型 操作

High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome

Heng Fang, Aihua Zhang, Xiaohang Zhou, Jingbo Yu, Qi Song, Xijun Wang

期刊论文

Regulation of T cell immunity by cellular metabolism

null

期刊论文

denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolicpathways

期刊论文

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

期刊论文

New insights into different surfactants’ impacts on sludge fermentation: Focusing on the particular metabolic

期刊论文

Seasonal variations of transport pathways andpotential sources of PM

Yuan Chen, Shaodong Xie, Bin Luo

期刊论文

ROLE OF NITROGEN SENSING AND ITS INTEGRATIVE SIGNALING PATHWAYS IN SHAPING ROOT SYSTEM ARCHITECTURE

期刊论文

Metabolic hypertension: concept and practice

null

期刊论文

Energy transition toward carbon-neutrality in China: Pathways, implications and uncertainties

期刊论文

Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways

期刊论文

Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes

null

期刊论文

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways

期刊论文

Assembly of biosynthetic pathways in

Lidan Ye,Xiaomei Lv,Hongwei Yu

期刊论文

Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology

null

期刊论文

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

期刊论文