资源类型

期刊论文 137

会议视频 1

年份

2023 8

2022 13

2021 4

2020 8

2019 3

2018 2

2017 7

2016 5

2015 9

2014 7

2013 5

2012 6

2011 10

2010 3

2009 7

2008 15

2007 8

2006 5

2005 1

2004 1

展开 ︾

关键词

振动 6

动力特性 2

振动信号 2

故障诊断 2

混沌 2

滚动轴承 2

非线性 2

AR模型 1

Anderson 模型 1

Casimir力 1

RBF神经网络 1

β-粒子的横向振动 1

三塔双跨悬索桥 1

主动控制 1

交叉模态 1

交通导致振动 1

保持电缆 1

信号平稳化 1

全比尺模型试验 1

展开 ︾

检索范围:

排序: 展示方式:

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Recent development of vibration utilization engineering

WEN Bangchun

《机械工程前沿(英文)》 2008年 第3卷 第1期   页码 1-9 doi: 10.1007/s11465-008-0017-2

摘要: The utilization of vibration and wave, which was developed during the latter half of the 20th century, is one of the most valueable technology applications and has been rapidly developing recently . Because the technique is closely associated with industry and agriculture, it can create huge social and economical benefits and provide excellent services for society. Thus, due to its necessity in industry and daily life, extensive research has been devoted to vibration utillization engineering. In this paper, vibration utilization is classified into linear or non-linear vibrations, waves, and electric-magnetic oscillations. Their phenomena, patterns, and applications in nature and society are introduced. Some research results about vibration utilization engineering are described.

关键词: utilization engineering     non-linear     vibration     vibration utillization     utillization engineering    

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 229-234 doi: 10.1007/s11465-011-0128-z

摘要:

To reduce vibration and noise, a damping layer and constraint layer are usually pasted on the inner surface of a gearbox thin shell, and their thicknesses are the main parameters in the vibration and noise reduction design. The normal acceleration of the point on the gearbox surface is the main index that can reflect the vibration and noise of that point, and the normal accelerations of different points can reflect the degree of the vibration and noise of the whole structure. The K-S function is adopted to process many points’ normal accelerations as the comprehensive index of the vibration characteristics of the whole structure, and the vibration acceleration level is adopted to measure the degree of the vibration and noise. Secondary development of the Abaqus preprocess and postprocess on the basis of the Python scripting programming automatically modifies the model parameters, submits the job, and restarts the analysis totally, which avoids the tedious work of returning to the Abaqus/CAE for modifying and resubmitting and improves the speed of the preprocess and postprocess and the computational efficiency.

关键词: Abaqus secondary development     Python language     vibration and noise reduction     K-S function     vibration acceleration level    

Similitude design for the vibration problems of plates and shells: A review

Yunpeng ZHU, You WANG, Zhong LUO, Qingkai HAN, Deyou WANG

《机械工程前沿(英文)》 2017年 第12卷 第2期   页码 253-264 doi: 10.1007/s11465-017-0418-1

摘要:

Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

关键词: review     dynamic     similitude     vibration     model test    

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

《结构与土木工程前沿(英文)》   页码 981-993 doi: 10.1007/s11709-023-0979-5

摘要: This study modeled the moving-vehicle-induced forcing excitation on a single-span prismatic bridge as a multiple frequency-multiplication harmonic load on the modal coordinates of a linear elastic simple Euler–Bernoulli beam, and investigated the forced modal oscillation and resonance behavior of this type of dynamic system. The forced modal responses consist of multiple frequency-multiplication steady-state harmonics and one damped mono-frequency complementary harmonic. The analysis revealed that a moving load induces high-harmonic forced resonance amplification when the moving speed is low. To verify the occurrence of high-harmonic forced resonance, numerical tests were conducted on single-span simple beams based on structural modeling using the finite element method (FEM) and a moving sprung-mass oscillator vehicle model. The forced resonance amplification characteristics of the fundamental mode for beam response estimation are presented with consideration to different end restraint conditions. The results reveal that the high-harmonic forced resonance may be significant for the investigated beams subjected to vehicle loads moving at specific low speeds. For the investigated single-span simple beams, the moving vehicle carriage heaving oscillation modulates the beam modal frequency, but does not induce notable variation of the modal oscillation harmonic structure for the cases that vehicle of small mass moves in low speed.

关键词: forced vibration     linear Euler beam     moving load     harmonic structure     frequency modulation     end restraints    

Analytical and numerical investigation into the longitudinal vibration of uniform nanotubes

null

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 142-149 doi: 10.1007/s11465-014-0292-z

摘要:

In recent years, prediction of the behaviors of micro and nanostructures is going to be a matter of increasing concern considering their developments and uses in various engineering fields. Since carbon nanotubes show the specific properties such as strength and special electrical behaviors, they have become the main subject in nanotechnology researches. On the grounds that the classical continuum theory cannot accurately predict the mechanical behavior of nanostructures, nonlocal elasticity theory is used to model the nanoscaled systems. In this paper, a nonlocal model for nanorods is developed, and it is used to model the carbon nanotubes with the aim of the investigating into their longitudinal vibration. Following the derivation of governing equation of nanorods and estimation of nondimensional frequencies, the effect of nonlocal parameter and the length of the nanotube on the obtained frequencies are studied. Furthermore, differential quadrature method, as a numerical solution technique, is used to study the effect of these parameters on estimated frequencies for both classical and nonlocal theories.

关键词: continuum theory     differential quadrature method     nanorod     longitudinal vibration    

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

Conformal analysis of fundamental frequency of vibration of elastic clamped plates

QI Hongyuan, ZHU Hengjun

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 429-432 doi: 10.1007/s11465-007-0073-z

摘要: To calculate the fundamental frequency of vibration of special-shaped and elastic clamped plates, the conformal mapping theory is adopted to separate the interpolating points of a complicated boundary into odd and even sequences, both of which can be mutually iterated, so that the conformal mapping function between the complicated region and the unit dish region is established. Trigonometric interpolation and convergence along the normal direction methods are provided, and the complex coefficients of the conformal mapping function are calculated. Galerkin method is used to obtain the solution of fundamental frequency in the vibrating differential function of the complicated vibrating region. Finally, taking ellipse elastic clamped plates as an example, the effects on fundamental frequency coefficient caused by eccentric ratio and area size are analyzed.

关键词: direction     theory     vibration     odd     complicated boundary    

An investigation into the vibration of harmonic drive systems

M. Masoumi, H. Alimohammadi

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 409-419 doi: 10.1007/s11465-013-0275-5

摘要:

Harmonic drive systems are precise and specific transmission gear systems which are beneficial in terms of the high transmission ratio and almost zero backlash. These inherent and spectacular properties result in using this mechanism in robotic and space sciences where the precision and lightwieght play an important role. This paper presents a vibration analysis of harmonic drive systems using the shell theory. Equations of vibration for the flexspline and the circular spline of the system are derived and used to find the natural frequencies for both parts and, moreover, vibration response of the system under the operating condition is calculated. Also, obtained vibration equations are utilized to study the effects of different involved parameters such as the geometry of the flexspline and its gear tooth, eccentricity, and unbalancing on the vibrational behavior of the system.

关键词: harmonic drive system     strain wave gearing mechanism     vibration analysis     natural frequencies    

An overview of vortex-induced vibration (VIV) of bridge decks

Teng WU, Ahsan KAREEM

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 335-347 doi: 10.1007/s11709-012-0179-1

摘要: A brief overview of vortex-induced vibration (VIV) of circular cylinders is first given as most of VIV studies have been focused on this particular bluff cross-section. A critical literature review of VIV of bridge decks that highlights physical mechanisms central to VIV from a renewed perspective is provided. The discussion focuses on VIV of bridge decks from wind-tunnel experiments, full-scale observations, semi-empirical models and computational fluids dynamics (CFD) perspectives. Finally, a recently developed reduced order model (ROM) based on truncated Volterra series is introduced to model VIV of long-span bridges. This model captures successfully salient features of VIV at “lock-in” and unlike most phenomenological models offers physical significance of the model kernels.

关键词: vortex-induced vibration (VIV)     Volterra series     bridge    

Evaluation of transmissibility for a class of nonlinear passive vibration isolators

Z. K. PENG, Z. Q. LANG, G. MENG

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 401-409 doi: 10.1007/s11465-012-0349-9

摘要:

In this study, the concept of Output Frequency Response Functions (OFRFs) is applied to represent the transmissibility of nonlinear isolators in frequency domain. With the OFRFs estimated from numerical simulation responses, an explicit analytical relationship between the transmissibility and the nonlinear characteristic parameters is derived for a wide class of nonlinear isolators that have nonlinear anti-symmetric damping characteristics and a comprehensive pattern about how the nonlinear damping characteristic parameters might affect the force and displacement transmissibility is built for the vibration isolators. The results reveal that it is reasonable to analyze the force and displacement transmissibility of the nonlinear isolators by simply investigating the fundamental harmonic components of the force and displacement outputs of the nonlinear isolators, and the introduction of a nonlinear anti-symmetric damping into vibration isolators can significantly suppress both the force and displacement transmissibility over the resonant frequency region, but has almost no effect on the transmissibility at non-resonant regions. These conclusions are of significant importance in the analysis and design of the nonlinear vibration isolators with nonlinear anti-symmetric damping.

关键词: nonlinear vibration     volterra series     Output Frequency Response Functions (OFRFs)     nonlinear damping     vibration isolator    

of coupled multi-body dynamics–discrete element method for optimization of particle damper for cable vibration

Danhui DAN, Qianqing WANG, Jiongxin GONG

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 244-252 doi: 10.1007/s11709-021-0696-x

摘要: With the application of the particle damping technology to cable vibration attenuation, the rootless cable damper overcomes the limit in installation height of existing dampers. Damping is achieved through energy dissipation by collisions and friction. In this paper, a coupled multi-body dynamics–discrete element method is proposed to simulate the damping of the damper–cable system under a harmonic excitation. The analyses are done by combining the discrete element method in EDEM and multi-body dynamics in ADAMS. The simulation results demonstrate the damping efficiency of rootless particle damper under different excitations and reveal the influence of the design parameters on its performance, including the filling ratio, particle size, coefficient of restitution, and coefficient of friction.

关键词: granular material     vibration control     discrete element method     particle damper     cable vibration    

Vibration analysis of medium and small span bridges subjected to mixed marshalling freight trains

LI Qi, WU Dingjun, HUANG Xiaobin

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 133-138 doi: 10.1007/s11709-008-0019-5

摘要: It has been reported several times that train derailment occurs when mixed marshalling freight trains traverse bridges at high speeds in China. This study aims to explain this phenomenon numerically based on the train-bridge coupling vibration theory and its associated computer program. The train-bridge vibration characteristic is analyzed by a computer program when mixed marshalling freight trains traverse 32-meter-span prestressed concrete simple beam bridges. The mechanism that dynamic responses of the bridges are prominent and that empty trains are inclined to derail are derived from the dynamic responses analysis. The analysis indicates that the significant differences of axle loads between heavy vehicles and empty vehicles produce periodic forced loadings of large amplitudes. These periodic loadings cause severe vibration of bridges. In turn, severe vibration of the bridges produces intensive counteraction to empty vehicles.

关键词: train-bridge vibration     vibration characteristic     associated computer     train-bridge     phenomenon    

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 410-416 doi: 10.1007/s11465-012-0341-4

摘要:

Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

关键词: tool vibration     magneto rheological damper     hard turning     surface finish     tool wear    

Numerical analysis of vehicle-bridge coupling vibration concerning nonlinear stress-dependent damping

Pengfei LI; Jinquan ZHANG; Shengqi MEI; Zhenhua DONG; Yan MAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 239-249 doi: 10.1007/s11709-021-0804-y

摘要: Damping is known to have a considerable influence on the dynamic behavior of bridges. The fixed damping ratios recommended in design codes do not necessarily represent the complicated damping characteristics of bridge structures. This study investigated the application of stress-dependent damping associated with vehicle-bridge coupling vibration and based on that investigation proposed the stress-dependent damping ratio. The results of the investigation show that the stress-dependent damping ratio is significantly different from the constant damping ratio (5%) defined in the standard specification. When vehicles travel at speeds of 30, 60, and 90, the damping ratios of the bridge model are 3.656%, 3.658%, and 3.671%, respectively. The peak accelerations using the regular damping ratio are 18.9%, 21.3%, and 14.5% of the stress-dependent damping ratio, respectively. When the vehicle load on the bridge is doubled, the peak acceleration of the mid-span node increases by 5.4 times, and the stress-related damping ratio increases by 2.1%. A corrugated steel-web bridge is being used as a case study, and the vibration response of the bridge is compared with the measured results. The acceleration response of the bridge which was calculated using the stress-dependent damping ratio is significantly closer to the measured acceleration response than that using the regular damping ratio.

关键词: vehicle-bridge vibration system     dynamic analysis     stress-dependent damping     energy dissipation    

标题 作者 时间 类型 操作

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Recent development of vibration utilization engineering

WEN Bangchun

期刊论文

Application of python-based Abaqus preprocess and postprocess technique in analysis of gearbox vibration

Guilian YI, Yunkang SUI, Jiazheng DU

期刊论文

Similitude design for the vibration problems of plates and shells: A review

Yunpeng ZHU, You WANG, Zhong LUO, Qingkai HAN, Deyou WANG

期刊论文

Multi-harmonic forced vibration and resonance of simple beams to moving vehicles

期刊论文

Analytical and numerical investigation into the longitudinal vibration of uniform nanotubes

null

期刊论文

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文

Conformal analysis of fundamental frequency of vibration of elastic clamped plates

QI Hongyuan, ZHU Hengjun

期刊论文

An investigation into the vibration of harmonic drive systems

M. Masoumi, H. Alimohammadi

期刊论文

An overview of vortex-induced vibration (VIV) of bridge decks

Teng WU, Ahsan KAREEM

期刊论文

Evaluation of transmissibility for a class of nonlinear passive vibration isolators

Z. K. PENG, Z. Q. LANG, G. MENG

期刊论文

of coupled multi-body dynamics–discrete element method for optimization of particle damper for cable vibration

Danhui DAN, Qianqing WANG, Jiongxin GONG

期刊论文

Vibration analysis of medium and small span bridges subjected to mixed marshalling freight trains

LI Qi, WU Dingjun, HUANG Xiaobin

期刊论文

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

期刊论文

Numerical analysis of vehicle-bridge coupling vibration concerning nonlinear stress-dependent damping

Pengfei LI; Jinquan ZHANG; Shengqi MEI; Zhenhua DONG; Yan MAO

期刊论文