Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 10, Issue 3 doi: 10.1016/j.eng.2020.11.002

Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases

a School of Environment, Tsinghua University, Beijing 100084, China
b Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Received: 2020-08-27 Revised: 2020-10-26 Accepted: 2020-11-10 Available online: 2021-01-05

Next Previous

Abstract

The recent outbreak of coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.

Figures

Fig. 1

Fig. 2

References

[ 1 ] Managing epidemics: key facts about major deadly diseases [Internet]. Geneva: World Health Organization; c2018 [cited 2020 Apr 10]. Available from: https://apps.who.int/iris/handle/10665/272442. link1

[ 2 ] Sampathkumar P, Sanchez JL. Zika virus in the Americas: a review for clinicians. Mayo Clin Proc 2016;91(4):514–21. link1

[ 3 ] Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers 2016;2(1):16055. link1

[ 4 ] Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 2017;544(7650):309–15. link1

[ 5 ] Zhu M, Lin ZG, Zhang L. Spatial–temporal risk index and transmission of a nonlocal dengue model. Nonlinear Anal Real World Appl 2020;53:103076. link1

[ 6 ] Maljkovic Berry I, Rutvisuttinunt W, Sippy R, Beltran-Ayala E, Figueroa K, Ryan S, et al. The origins of dengue and chikungunya viruses in Ecuador following increased migration from Venezuela and Colombia. BMC Evol Biol 2020;20(1):31. link1

[ 7 ] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496(7446):504–7. link1

[ 8 ] Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidencebased consensus. PLoS Negl Trop Dis 2012;6(8):e1760. link1

[ 9 ] Lee HW, Lee PW, Baek LJ, Song CK, Seong IW. Intraspecific transmission of Hantaan virus, etiologic agent of Korean hemorrhagic fever, in the rodent Apodemus agrarius. Am J Trop Med Hyg 1981;30(5):1106–12. link1

[10] Jonsson CB, Figueiredo LTM, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 2010;23(2):412–41. link1

[11] Lee HW. Epidemiology and pathogenesis of hemorrhagic fever with renal syndrome. In: Elliott RM, editor. The bunyaviridae. Boston: Springer; 1996. p. 253–67. link1

[12] Johnson NPAS, Mueller J. Updating the accounts: global mortality of the 1918–1920 ‘‘Spanish” influenza pandemic. Bull Hist Med 2002;76(1):105–15. link1

[13] Olson DR, Simonsen L, Edelson PJ, Morse SS. Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc Natl Acad Sci USA 2005;102(31):11059–63. link1

[14] Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 2006;12(1):15–22. link1

[15] Smithburn KC, Hughes TP, Burke AW, Paul JH. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 1940;20:471–92. link1

[16] Shi PY, Kramer LD. Molecular detection of West Nile virus RNA. Expert Rev Mol Diagn 2003;3(3):357–66. link1

[17] Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. JAMA 2013;310(3):308–15. link1

[18] Sambri V, Capobianchi M, Charrel R, Fyodorova M, Gaibani P, Gould E, et al. West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 2013;19(8):699–704. link1

[19] Chancey C, Grinev A, Volkova E, Rios M. The global ecology and epidemiology of West Nile virus. Biomed Res Int 2015;2015:376230. link1

[20] WHO. West Nile virus Statistics & Maps [Internet]. Geneva: World Health Organization; c2020 [cited 2020 Oct 6]. Available from: https://www. cdc.gov/westnile/statsmaps/index.html. link1

[21] Kazmi SS, Ali W, Bibi N, Nouroz F. A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res 2020;27(1):5. link1

[22] Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet 2017;390(10107):2099–109. link1

[23] Powers AM. Chikungunya virus outbreak expansion and microevolutionary events affecting epidemiology and epidemic potential. Res Rep Trop Med 2015;6:11–9. link1

[24] Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 2007;7(5):319–27. link1

[25] Rezza G, Weaver SC. Chikungunya as a paradigm for emerging viral diseases: evaluating disease impact and hurdles to vaccine development. PLoS Negl Trop Dis 2019;13(1):e0006919. link1

[26] Weaver SC, Chen R, Diallo M. Chikungunya virus: role of vectors in emergence from enzootic cycles. Annu Rev Entomol 2020;65(1):313–32. link1

[27] Yadav PD, Patil S, Jadhav SM, Nyayanit DA, Kumar V, Jain S, et al. Phylogeography of Kyasanur forest disease virus in India (1957–2017) reveals evolution and spread in the Western Ghats region. Sci Rep 2020;10:1966. link1

[28] Tandale BV, Balakrishnan A, Yadav PD, Marja N, Mourya DT. New focus of Kyasanur forest disease virus activity in a tribal area in Kerala, India, 2014. Infect Dis Poverty 2015;4(1):12. link1

[29] Ajesh K, Nagaraja BK, Sreejith K. Kyasanur forest disease virus breaking the endemic barrier: an investigation into ecological effects on disease emergence and future outlook. Zoonoses Public Health 2017;64(7):e73–80. link1

[30] Smith DH, Isaacson M, Johnson KM, Bagshawe A, Johnson BK, Swanapoel R, et al. Marburg-virus disease in Kenya. Lancet 1982;319(8276):816–20. link1

[31] Chronology of major Marburg virus disease outbreaks [Internet]. Geneva: World Health Organization; 2018 Feb 15 [cited 2020 Oct 6]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/marburg-virus-disease.

[32] Liu WB, Li ZX, Du Y, Cao GW. Ebola virus disease: from epidemiology to prophylaxis. Mil Med Res 2015;2:7. link1

[33] Murray MJ. Ebola virus disease: a review of its past and present. Anesth Analg 2015;121(3):798–809. link1

[34] Chronology of previous Ebola virus disease outbreaks [Internet]. Geneva: World Health Organization; 2020 Feb 10[cited 2020 Oct 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. link1

[35] Eaton BT, Broder CC, Wang LF. Hendra and Nipah viruses: pathogenesis and therapeutics. Curr Mol Med 2005;5(8):805–16. link1

[36] Barclay AJ, Paton DJ. Hendra (equine morbillivirus). Vet J 2000;160(3): 169–76. link1

[37] Hendra virus infection [Internet]. Geneva: World Health Organization; c2020 [cited 2020 Oct 6]. Available from: https://www.who.int/health-topics/ hendra-virus-disease#tab=tab_1. link1

[38] Herfst S, Imai M, Kawaoka Y, Fouchier RAM. Avian influenza virus transmission to mammals. In: Compans RW, Oldstone MBA, editors. Influenza pathogenesis and control—volume I. Cham: Springer; 2014. p. 137–55. link1

[39] Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, et al. A systematic review of the comparative epidemiology of avian and human influenza A H5N1 and H7N9—lessons and unanswered questions. Transbound Emerg Dis 2016;63(6):602–20. link1

[40] Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019;132(1):81–95. link1

[41] Aditi SM, Shariff M. Nipah virus infection: a review. Epidemiol Infect 2019;147:e95. link1

[42] Nipah virus infection. 2009 Jun 15 [cited 2020 Oct 6]. Available from: https:// www.who.int/publications/i/item/10665-205574.

[43] Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 2015;23(8):468–78. link1

[44] Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003;302(5643):276–8. link1

[45] SARS outbreak contained worldwide [Internet]. Geneva: World Health Organization; 2003 Jul 5 [cited 2020 Oct 6]. Available from: https://www. who.int/mediacentre/news/releases/2003/pr56/en/. link1

[46] York I, Donis RO. The 2009 pandemic influenza virus: where did it come from, where is it now, and where is it going? In: Richt JA, Webby RJ, editors. Swine influenza. Berlin: Springer; 2013. p. 241–57. link1

[47] Kelly H, Peck HA, Laurie KL, Wu P, Nishiura H, Cowling BJ. The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countries prior to vaccination. PLoS ONE 2011;6(8):e21828. link1

[48] Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 2012;12(9):687–95. link1

[49] Pandemic (H1N1) 2009—update 112 [Internet]. Geneva: World Health Organization; 2010 Aug 6 [cited 2020 Oct 6]. Available from: https://www. who.int/csr/don/2010_08_06/en/. link1

[50] Wong JY, Kelly H, Ip DKM, Wu JT, Leung GM, Cowling BJ. Case fatality risk of influenza A (H1N1pdm09): a systematic review. Epidemiology 2013;24 (6):830–41. link1

[51] Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution. Trends Microbiol 2014;22 (10):573–9. link1

[52] H7N9 situation update [Internet]. Rome: Food and Agriculture Organization of the United Nations; c2020 [cited 2020 Oct 6]. Available from: http:// www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update. html. link1

[53] Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020;28(3):391–5. link1

[54] WHO. Coronavirus disease (COVID-19) situation dashboard [Internet]. Geneva: World Health Organization; c2020 [cited 2020 Oct 05]. Available from: https://covid19.who.int. link1

[55] Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquitoborne disease. N Engl J Med 2015;372(13):1231–9. link1

[56] Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Curr Opin Virol 2011;1 (6):624–34. link1

[57] Coronavirus disease (COVID-19) situation report [Internet]. Geneva: World Health Organization; 2020 Oct 6 [cited 2020 Oct 6]. Available from: https:// www.who.int/publications/m/item/weekly-epidemiological-update—5-october2020. link1

[58] Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 2008;72(3):457–70. link1

[59] Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B. Global water pollution and human health. Annu Rev Environ Resour 2010;35 (1):109–36. link1

[60] Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature 2003;421 (6918):57–60. link1

[61] Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M. Natural disaster hotspots: a global risk analysis. Technical report. Washington, DC: The World Bank; 2005.

[62] Markovchick-Nicholls L, Regan HM, Deutschman DH, Widyanata A, Martin B, Noreke L, et al. Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv Biol 2008;22(1):99–109. link1

[63] Smith RJ, Muir RD, Walpole MJ, Balmford A, Leader-Williams N. Governance and the loss of biodiversity. Nature 2003;426(6962):67–70. link1

[64] Kansky R, Kidd M, Knight AT. A wildlife tolerance model and case study for understanding human wildlife conflicts. Biol Conserv 2016;201:137–45. link1

[65] Whittaker D, Knight RL. Understanding wildlife responses to humans. Wildl Soc Bull 1998;26(2):312–7. link1

[66] Shuman EK. Global climate change and infectious diseases. N Engl J Med 2010;362(12):1061–3. link1

[67] Spencer JH, Finucane ML, Fox JM, Saksena S, Sultana N. Emerging infectious disease, the household built environment characteristics, and urban planning: evidence on avian influenza in Vietnam. Landsc Urban Plan 2020;193:103681. link1

[68] Zumla A, Hui DSC. Emerging and reemerging infectious diseases: global overview. Infect Dis Clin North Am 2019;33(4): xiii–xix. link1

[69] Wu T, Perrings C, Kinzig A, Collins JP, Minteer BA, Daszak P. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: a review. Ambio 2017;46(1):18–29. link1

[70] Langwig KE, Voyles J, Wilber MQ, Frick WF, Murray KA, Bolker BM, et al. Context-dependent conservation responses to emerging wildlife diseases. Front Ecol Environ 2015;13(4):195–202. link1

[71] Pike J, Bogich T, Elwood S, Finnoff DC, Daszak P. Economic optimization of a global strategy to address the pandemic threat. Proc Natl Acad Sci USA 2014;111(52):18519–23. link1

[72] Rulli MC, Santini M, Hayman DT, D’Odorico P. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci Rep 2017;7 (1):41613. link1

[73] Lloren KKS, Lee T, Kwon JJ, Song MS. Molecular markers for interspecies transmission of avian influenza viruses in mammalian hosts. Int J Mol Sci 2017;18(12):2706. link1

[74] Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol 2018;16 (8):e3000003. link1

[75] Jaramillo D, Fielder S, Whittington RJ, Hick P. Host, agent and environment interactions affecting Nervous necrosis virus infection in Australian bass Macquaria novemaculeata. J Fish Dis 2019;42(2):167–80. link1

[76] Gould EA, Higgs S. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 2009;103(2):109–21. link1

[77] Leroy E, Gonzalez JP, Pourrut X. Ebolavirus and other filoviruses. In: Childs JE, Mackenzie JS, Richt JA, editors. Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission. Berlin: Springer-Verlag; 2007. p. 363–87. link1

[78] Li M, Yang Y, Lu Y, Zhang D, Liu Y, Cui X, et al. Natural host–environmental media–human: a new potential pathway of COVID-19 outbreak. Engineering 2020;6(10):1085–98. link1

[79] Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016;9(1):516. link1

[80] Ecology WB. How climate change alters rhythms of the wild. Science 2000;287(5454):793–5. link1

[81] Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 2008;322(5899):258–61. link1

[82] Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA 2015;112(38):E5327–35. link1

[83] Zhong ZP, Solonenko NE, Li YF, Gazitúa MC, Roux S, Davis ME, et al. Glacier ice archives fifteen-thousand-year-old viruses. 2020. bioRxiv: 2020.01.03. 894675.

[84] Tian H, Hu S, Cazelles B, Chowell G, Gao L, Laine M, et al. Urbanization prolongs hantavirus epidemics in cities. Proc Natl Acad Sci USA 2018;115 (18):4707–12. link1

[85] Kuiken T, Leighton FA, Fouchier RAM, LeDuc JW, Peiris JSM, Schudel A, et al. Public health. Pathogen surveillance in animals. Science 2005;309 (5741):1680–1. link1

[86] Pearce-Duvet JMC. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol Rev Camb Philos Soc 2006;81(3):369–82. link1

[87] Normile D. China’s living laboratory in urbanization. Science 2008;319 (5864):740–3. link1

[88] Sobsey MD, Shields PA, Hauchman FH, Hazard RL, Caton III LW. Survival and transport of hepatitis A virus in soils, groundwater and wastewater. Water Sci Technol 1986;18(10):97–106. link1

[89] Kimura M, Jia ZJ, Nakayama N, Asakawa S. Ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nutr 2008;54(1):1–32. link1

[90] Blanc R, Nasser A. Effect of effluent quality and temperature on the persistence of viruses in soil. Water Sci Technol 1996;33:237–42. link1

[91] Allison L, Salter M, Mann G, Howard CR. Thermal inactivation of Pichinde virus. J Virol Methods 1985;11(3):259–64. link1

[92] Kuzyakov Y, Mason-Jones K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem 2018;127:305–17. link1

[93] Cook N, Bertrand I, Gantzer C, Pinto RM, Bosch A. Persistence of hepatitis A virus in fresh produce and production environments, and the effect of disinfection procedures: a review. Food Environ Virol 2018;10(3):253–62. link1

[94] Gundy PM, Gerba CP, Pepper IL. Survival of coronaviruses in water and wastewater. Food Environ Virol 2009;1:10–4. link1

[95] Lakdawala SS, Lamirande EW, Suguitan Jr AL, Wang W, Santos CP, Vogel L, et al. Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog 2011;7(12):e1002443. link1

[96] Gonzalez-Martin C, Teigell-Perez N, Lyles M, Valladares B, Griffin DW. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions. Res Microbiol 2013;164(1):17–21. link1

[97] Ashelford KE, Day MJ, Fry JC. Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 2003;69(1):285–9. link1

[98] Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 2005;71(6):3119–25. link1

[99] Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M. Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 2009;155(1):51–60. link1

[100] Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils 2013;49(7):857–69. link1

[101] Chen L, Xun W, Sun L, Zhang N, Shen Q, Zhang R. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of Southern China. Eur J Soil Biol 2014;62:121–6. link1

[102] Amossé J, Bettarel Y, Bouvier C, Bouvier T, Tran DT, Doan TT, et al. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biol Biochem 2013;66:197–203. link1

[103] Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 2017;4(1):201–19. link1

[104] Van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill 2013;18(38):20590. link1

[105] Coulliette AD, Perry KA, Edwards JR, Noble-Wang JA. Persistence of the 2009 pandemic influenza A (H1N1) virus on N95 respirators. Appl Environ Microbiol 2013;79(7):2148–55. link1

[106] Zuo Z, de Abin M, Chander Y, Kuehn TH, Goyal SM, Pui DYH. Comparison of spike and aerosol challenge tests for the recovery of viable influenza virus from non-woven fabrics. Influenza Other Respir Viruses 2013;7(5):637–44. link1

[107] Mukherjee DV, Cohen B, Bovino ME, Desai S, Whittier S, Larson EL. Survival of influenza virus on hands and fomites in community and laboratory settings. Am J Infect Control 2012;40(7):590–4. link1

[108] Greatorex JS, Digard P, Curran MD, Moynihan R, Wensley H, Wreghitt T, et al. Survival of influenza A (H1N1) on materials found in households: implications for infection control. PLoS ONE 2011;6(11):e27932. link1

[109] Dublineau A, Batéjat C, Pinon A, Burguière AM, Leclercq I, Manuguerra JC. Persistence of the 2009 pandemic influenza A (H1N1) virus in water and on non-porous surface. PLoS ONE 2011;6(11):e28043. link1

[110] Wood JP, Choi YW, Chappie DJ, Rogers JV, Kaye JZ. Environmental persistence of a highly pathogenic avian influenza (H5N1) virus. Environ Sci Technol 2010;44(19):7515–20. link1

[111] Sakaguchi H, Wada K, Kajioka J, Watanabe M, Nakano R, Hirose T, et al. Maintenance of influenza virus infectivity on the surfaces of personal protective equipment and clothing used in healthcare settings. Environ Health Prev Med 2010;15(6):344–9. link1

[112] Tiwari A, Patnayak DP, Chander Y, Parsad M, Goyal SM. Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis 2006;50 (2):284–7. link1

[113] Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour Jr HH. Survival of influenza viruses on environmental surfaces. J Infect Dis 1982;146 (1):47–51. link1

[114] Chan KH, Peiris JSM, Lam SY, Poon LLM, Yuen KY, Seto WH. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol 2011;2011:734690. link1

[115] Ijaz MK, Brunner AH, Sattar SA, Nair RC, Johnson-Lussenburg CM. Survival characteristics of airborne human coronavirus 229E. J Gen Virol 1985;66(Pt 12):2743–8. link1

[116] Sizun J, Yu MWN, Talbot PJ. Survival of human coronaviruses 229E and OC43 in suspension and after drying on surfaces: a possible source of hospitalacquired infections. J Hosp Infect 2000;46(1):55–60. link1

[117] Kim SH, Chang SY, Sung M, Park JH, Kim HB, Lee H, et al. Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards. Clin Infect Dis 2016;63(3):363–9. link1

[118] Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol 2005;194(1–2):1–6. link1

[119] Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. mBio 2015;6(6):e01697–15. link1

[120] Weber DJ, Sickbert-Bennett EE, Kanamori H, Rutala WA. New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): focus on environmental survival and germicide susceptibility. Am J Infect Control 2019;47(Suppl):A29–38. link1

[121] Zhao B, Zhang H, Zhang J, Jin Y. Virus adsorption and inactivation in soil as influenced by autochthonous microorganisms and water content. Soil Biol Biochem 2008;40(3):649–59. link1

[122] Yeager JG, O’Brien RT. Enterovirus inactivation in soil. Appl Environ Microbiol 1979;38(4):694–701. link1

[123] Yeager JG, O’Brien RT. Structural changes associated with poliovirus inactivation in soil. Appl Environ Microbiol 1979;38(4):702–9. link1

[124] Taylor LH, Latham SM, Woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 2001;356(1411):983–9. link1

[125] Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci 2015;282 (1798):20142124. link1

[126] Murthy S, Couacy-Hymann E, Metzger S, Nowak K, De Nys H, Boesch C, et al. Absence of frequent herpesvirus transmission in a nonhuman primate predator-prey system in the wild. J Virol 2013;87(19):10651–9. link1

[127] Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013;368(20):1888–97. link1

[128] Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci USA 2013;110(Suppl 1):3681–8. link1

[129] Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003;421(6918):37–42. link1

[130] McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. Lancet 2006;367(9513):859–69. link1

[131] Paz S. The West Nile virus outbreak in Israel (2000) from a new perspective: the regional impact of climate change. Int J Environ Health Res 2006;16 (1):1–13. link1

[132] Gale P, Brouwer A, Ramnial V, Kelly L, Kosmider R, Fooks AR, et al. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion. Epidemiol Infect 2010;138(2):214–25. link1

[133] Jupp PG. Laboratory studies on the transmission of West Nile virus by Culex (Culex) univittatus Theobald; factors influencing the transmission rate. J Med Entomol 1974;11(4):455–8. link1

[134] Epstein PR, Diaz HF, Elias SA, Grabherr G, Graham NE, Martens WJM, et al. Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Amer Meteor Soc 1998;79(3):409–18. link1

[135] Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Bouley T, Boykoff M, et al. The Lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 2018;391 (10120):581–630. link1

[136] Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, et al. Thirtythousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA 2014;111(11):4274–9. link1

[137] Hu H, Nigmatulina K, Eckhoff P. The scaling of contact rates with population density for the infectious disease models. Math Biosci 2013;244(2):125–34. link1

[138] Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 2004;17(1):136–73. link1

[139] Hing S, Narayan EJ, Thompson RCA, Godfrey SS. The relationship between physiological stress and wildlife disease: consequences for health and conservation. Wildl Res 2016;43(1):51–60. link1

[140] Apanius V. Stress and immune defense. Adv Stud Behav 1998;27:133–53. link1

[141] Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 2015;160(6):1222–32. link1

[142] Bradley CA, Altizer S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 2007;22(2):95–102. link1

[143] Walsh MG, Mor SM, Maity H, Hossain S. Forest loss shapes the landscape suitability of Kyasanur Forest Disease in the biodiversity hotspots of the Western Ghats, India. Int J Epidemiol 2019;48(6):1804–14. link1

[144] MacDonald AJ, Larsen AE, Plantinga AJ. Missing the people for the trees: identifying coupled natural–human system feedbacks driving the ecology of Lyme disease. J Appl Ecol 2019;56(2):354–64. link1

[145] Estrada-Peña A, Zatansever Z, Gargili A, Aktas M, Uzun R, Ergonul O, et al. Modeling the spatial distribution of Crimean–Congo hemorrhagic fever outbreaks in Turkey. Vector Borne Zoonotic Dis 2007;7(4):667–78. link1

[146] Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, et al. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006;12(12):1888–94. link1

[147] Khan MSU, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. EcoHealth 2010;7(4):517–25. link1

[148] Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez JP, MuyembeTamfum JJ, et al. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis 2009;9(6):723–8. link1

[149] Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack LEO, Ksiazek TG, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 1996;2(4):321–5. link1

[150] Bøtner A, Belsham GJ. Virus survival in slurry: analysis of the stability of footand-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses. Vet Microbiol 2012;157(1–2):41–9. link1

[151] Seitz SR, Leon JS, Schwab KJ, Lyon GM, Dowd M, McDaniels M, et al. Norovirus infectivity in humans and persistence in water. Appl Environ Microbiol 2011;77(19):6884–8. link1

[152] Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020;323(16):1610–2. link1

[153] Zhang D, Yang Y, Huang X, Jiang J, Li M, Zhang X, et al. SARS-CoV-2 spillover into hospital outdoor environments. medRxiv 2020;05(12):2009710. link1

[154] Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382(16):1564–7. link1

[155] Mackenzie JS, Williams DT. The zoonotic flaviviruses of southern, southeastern and eastern Asia, and Australasia: the potential for emergent viruses. Zoonoses Public Health 2009;56(6–7):338–56. link1

[156] Mansfield KL, Lv JZ, Phipps LP, Johnson N. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol 2017;7:298. link1

[157] Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, et al. Disease and health management in Asian aquaculture. Vet Parasitol 2005;132(3–4):249–72. link1

[158] Hutson CL, Lee KN, Abel J, Carroll DS, Montgomery JM, Olson VA, et al. Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am J Trop Med Hyg 2007;76(4):757–68. link1

[159] Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA 2006;103(51):19368–73. link1

[160] Schikora A, Garcia AV, Hirt H. Plants as alternative hosts for Salmonella. Trends Plant Sci 2012;17(5):245–9. link1

[161] Strawn LK, Schneider KR, Danyluk MD. Microbial safety of tropical fruits. Crit Rev Food Sci Nutr 2011;51(2):132–45. link1

[162] Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005;438(7068):575–6. link1

[163] Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020;7(6):1012–23. link1

[164] Chen W, Yan M, Yang L, Ding B, He B, Wang Y, et al. SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis 2005;11 (3):446–8. link1

[165] Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, et al. A morbillivirus that caused fatal disease in horses and humans. Science 1995;268(5207):94–7. link1

[166] Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, et al. Infection of humans and horses by a newly described morbillivirus. Med J Aust 1995;162(12):642–5. link1

[167] Playford EG, McCall B, Smith G, Slinko V, Allen G, Smith I, et al. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis 2010;16(2):219–23. link1

[168] Hooper PT, Gould AR, Russell GM, Kattenbelt JA, Mitchell G. The retrospective diagnosis of a second outbreak of equine morbillivirus infection. Aust Vet J 1996;74(3):244–5. link1

[169] O’Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R, Gleeson LJ, et al. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 1997;349(9045):93–5. link1

[170] Muhairi SA, Hosani FA, Eltahir YM, Mulla MA, Yusof MF, Serhan WS, et al. Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates. Virus Genes 2016;52(6):848–54. link1

[171] Bermingham A, Chand MA, Brown CS, Aarons E, Tong C, Langrish C, et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill 2012;17(40):20290. link1

[172] Al-Tawfiq JA, Zumla A, Memish ZA. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel Med Infect Dis 2014;12(5):422–8. link1

[173] Van Reeth K. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet Res 2007;38(2):243–60. link1

[174] Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25(30):5637–44. link1

[175] Michaelis M, Doerr HW, Cinatl Jr J. An influenza A H1N1 virus revivalpandemic H1N1/09 virus. Infection 2009;37(5):381–9. link1

[176] Tanner WD, Toth DJA, Gundlapalli AV. The pandemic potential of avian influenza A(H7N9) virus: a review. Epidemiol Infect 2015;143(16):3359–74. link1

[177] Tang RB, Chen HL. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human. J Chin Med Assoc 2013;76(5):245–8. link1

[178] Katayama H, Haramoto E, Oguma K, Yamashita H, Tajima A, Nakajima H, et al. One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Res 2008;42(6–7):1441–8. link1

[179] Lodder WJ, de Roda Husman AM. Presence of noroviruses and other enteric viruses in sewage and surface waters in the Netherlands. Appl Environ Microbiol 2005;71(3):1453–61. link1

[180] Sahlström L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 2003;87(2):161–6. link1

[181] Wu C, Maurer C, Wang Y, Xue S, Davis DL. Water pollution and human health in China. Environ Health Perspect 1999;107(4):251–6. link1

[182] Nithiuthai S, Anantaphruti MT, Waikagul J, Gajadhar A. Waterborne zoonotic helminthiases. Vet Parasitol 2004;126(1–2):167–93. link1

[183] Karetnyi YV, Gilchrist MJR, Naides SJ. Hepatitis E virus infection prevalence among selected populations in Iowa. J Clin Virol 1999;14(1):51–5. link1

[184] Kasorndorkbua C, Guenette DK, Huang FF, Thomas PJ, Meng XJ, Halbur PG. Routes of transmission of swine hepatitis E virus in pigs. J Clin Microbiol 2004;42(11):5047–52. link1

[185] Meng XJ. From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res 2011;161(1):23–30. link1

[186] Yugo DM, Meng XJ. Hepatitis E virus: foodborne, waterborne and zoonotic transmission. Int J Environ Res Public Health 2013;10(10):4507–33. link1

[187] Vaidya SR, Tilekar BN, Walimbe AM, Arankalle VA. Increased risk of hepatitis E in sewage workers from India. J Occup Environ Med 2003;45(11):1167–70. link1

[188] Strunz EC, Addiss DG, Stocks ME, Ogden S, Utzinger J, Freeman MC. Water, sanitation, hygiene, and soil-transmitted helminth infection: a systematic review and meta-analysis. PLoS Med 2014;11(3):e1001620. link1

[189] Bancalari A, Martinez S. Exposure to sewage from on-site sanitation and child health: a spatial analysis of linkages and externalities in peri-urban Bolivia. J Water Sanit Hyg Dev 2018;8(1):90–9. link1

[190] Chen KT, Chang HL, Wang ST, Cheng YT, Yang JY. Epidemiologic features of hand–foot–mouth disease and herpangina caused by enterovirus 71 in Taiwan, 1998–2005. Pediatrics 2007;120(2):e244–52. link1

[191] Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis 2014;14(4):308–18. link1

[192] Ryder RW, Nsa W, Hassig SE, Behets F, Rayfield M, Ekungola B, et al. Perinatal transmission of the human immunodeficiency virus type 1 to infants of seropositive women in Zaire. N Engl J Med 1989;320(25):1637–42. link1

[193] Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 2005;3 (1):81–90. link1

[194] Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, et al. Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 2011;92(3):331–62. link1

[195] Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 2016;130:69–80. link1

[196] Counotte MJ, Kim CR, Wang J, Bernstein K, Deal CD, Broutet NJN, et al. Sexual transmission of Zika virus and other flaviviruses: a living systematic review. PLoS Med 2018;15(7):e1002611. link1

[197] Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ 2020;744:140911. link1

[198] Graiver DA, Topliff CL, Kelling CL, Bartelt-Hunt SL. Survival of the avian influenza virus (H6N2) after land disposal. Environ Sci Technol 2009;43 (11):4063–7. link1

[199] Hatch JJ. Threats to public health from gulls (Laridae). Int J Environ Health Res 1996;6(1):5–16. link1

[200] Mudge GP, Ferns PN. The feeding ecology of five species of gulls (Ayes: Larini) in the inner Bristol Channel. J Zool 1982;197(4):497–510. link1

[201] Carducci A, Federigi I, Verani M. Virus occupational exposure in solid waste processing facilities. Ann Occup Hyg 2013;57(9):1115–27. link1

[202] Duh D, Hasic S, Buzan E. The impact of illegal waste sites on a transmission of zoonotic viruses. Virol J 2017;14(1):134. link1

[203] Costa T, Akdeniz N. A review of the animal disease outbreaks and biosecure animal mortality composting systems. Waste Manag 2019;90:121–31. link1

[204] Simonsen L, Chowell G, Andreasen V, Gaffey R, Barry J, Olson D, et al. A review of the 1918 herald pandemic wave: importance for contemporary pandemic response strategies. Ann Epidemiol 2018;28(5):281–8. link1

[205] Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, et al. Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 2014;61(1):4–17. link1

[206] Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJA, van den Brand JMA, et al. One health, multiple challenges: the inter-species transmission of influenza A virus. One Health 2015;1:1–13. link1

[207] Andrew TB, Allan JR. Use of raptors to reduce scavenging bird numbers at landfill sites. Wildl Soc Bull 2006;34(4):1162–8. link1

[208] Camacho M, Hernández JM, Lima-Barbero JF, Höfle U. Use of wildlife rehabilitation centres in pathogen surveillance: a case study in white storks (Ciconia ciconia). Prev Vet Med 2016;130:106–11. link1

[209] Munster VJ, Baas C, Lexmond P, Waldenström J, Wallensten A, Fransson T, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 2007;3(5):e61. link1

[210] Plaza PI, Blanco G, Madariaga MJ, Boeri E, Teijeiro ML, Bianco G, et al. Scavenger birds exploiting rubbish dumps: pathogens at the gates. Transbound Emerg Dis 2019;66(2):873–81. link1

[211] Southgate V, Tchuem Tchuenté LA, Sène M, De Clercq D, Théron A, Jourdane J, et al. Studies on the biology of schistosomiasis with emphasis on the Senegal river basin. Mem Inst Oswaldo Cruz 2001;96(Suppl):75–8. link1

[212] Reiter P. Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Rev Sci Tech 2008;27(2):383–98. link1

[213] Zhang D, Ling H, Huang X, Li J, Li W, Yi C, et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci Total Environ 2020;741:140445. link1

[214] Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ 2020;728:138764. link1

[215] Bhowmick GD, Dhar D, Nath D, Ghangrekar MM, Banerjee R, Das S, et al. Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. npj Clean Water 2020;3(1):1–8. link1

[216] Zhang YZ, Zou Y, Fu ZF, Plyusnin A. Hantavirus infections in humans and animals. China Emerg Infect Dis 2010;16(8):1195–203. link1

[217] Chandra V, Taneja S, Kalia M, Jameel S. Molecular biology and pathogenesis of hepatitis E virus. J Biosci 2008;33(4):451–64. link1

Related Research