Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 8, Issue 1 doi: 10.1016/j.eng.2021.08.001

A General Strategy for Efficiently Constructing Multifunctional Cluster Fillers Using a Three-Fluid Nozzle Spray Drying Technique for Dental Restoration

a State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
c State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
d Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China

Received: 2021-01-12 Revised: 2021-02-28 Accepted: 2021-03-19 Available online: 2021-08-20

Next Previous

Abstract

Multifunctional fillers are greatly required for dental resin composites (DRCs). In this work, a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters (CNCs) consisting of different functional nanofillers for dental restoration. The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs. For a SiO2–ZrO2 binary system, the SiO2–ZrO2 CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties ((133.3 ± 4.7) MPa, (8.8 ± 0.5) GPa, (371.1 ± 13.3) MPa, and (64.5 ± 0.7) HV for flexural strength, flexural modulus, compressive strength, and hardness of DRCs, respectively), despite the introduction of ZrO2 nanoparticles, whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties. Furthermore, heat treatment of the SiO2–ZrO2 CNCs significantly improved the mechanical properties and radiopacity of the DRCs. The DRCs containing over 10% mass fraction ZrO2 nanoparticles can meet the requirement for radiopaque fillers. More importantly, this method can be expanded to ternary or quaternary systems. DRCs filled with SiO2–ZrO2–ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity (antibacterial ratio > 99%) in addition to excellent mechanical properties and radiopacity. Thus, the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] Li P, Zhang X, Hou C, Chen Y, He T. Highly efficient visible-light driven solarfuel production over tetra(4-carboxyphenyl) porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer. Appl Catal B 2018;238:656–63. link1

[ 2 ] Wang Z, Zhao Z, Baucom J, Wang D, Dai L, Chen JF. Nitrogen-doped graphene foam as a metal-free catalyst for reduction reactions under a high gravity field. Engineering 2020;6(6):680–7. link1

[ 3 ] Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020;368(6493):850–6. link1

[ 4 ] Schrauben JN, Hayoun R, Valdez CN, Braten M, Fridley L, Mayer JM. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 2012;336(6086):1298–301. link1

[ 5 ] Draz MS, Vasan A, Muthupandian A, Kanakasabapathy MK, Thirumalaraju P, Sreeram A, et al. Virus detection using nanoparticles and deep neural networkenabled smartphone system. Sci Adv 2020;6(51):eabd5354. link1

[ 6 ] Wang D, Wang Z, Zhan Q, Pu Y, Wang JX, Foster NR, et al. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 2017;3(3):402–8. link1

[ 7 ] Casamonti M, Risaliti L, Vanti G, Piazzini V, Bergonzi MC, Bilia AR. Andrographolide loaded in micro- and nano-formulations: improved bioavailability, target-tissue distribution, and efficacy of the ‘‘king of bitters.” Engineering 2019;5(1):69–75. link1

[ 8 ] McGillicuddy E, Morrison L, Cormican M, Dockery P, Morris D. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. Sci Total Environ 2018;645:356–62. link1

[ 9 ] Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5: 1758736014520809. link1

[10] Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007;369(9555):51–9. link1

[11] Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2010;94(1):22–31. link1

[12] Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002;23(8):1819–29. link1

[13] Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res 2011;90(4):402–16. link1

[14] Par M, Spanovic N, Bjelovucic R, Skenderovic H, Gamulin O, Tarle Z. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: degree of conversion, light transmittance and depth of cure. J Dent 2018;75:113–20. link1

[15] Besinis A, van Noort R, Martin N. Remineralization potential of fully demineralized dentin infiltrated with silica and hydroxyapatite nanoparticles. Dent Mater 2014;30(3):249–62. link1

[16] Makvandi P, Ghaemy M, Ghadiri AA, Mohseni M. Photocurable, antimicrobial quaternary ammonium-modified nanosilica. J Dent Res 2015;94(10):1401–7. link1

[17] Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin-based composite. J Dent 2008;36 (3):186–93. link1

[18] Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil 2010;37(5):364–76. link1

[19] Niu H, Yang DL, Sun Q, Pu Y, Gao T, Wang JX. A new method for predicting the maximum filler loading of dental resin composites based on DEM simulations and experiments. Dent Mater 2020;36(12):e375–85. link1

[20] Qian L, Wang R, Li W, Chen H, Jiang X, Zhu M. The synthesis of urchin-like serried hydroxyapatite (USHA) and its reinforcing effect for dental resin composites. Macromol Mater Eng 2019;304(5):1800738 link1

[21] Chadda H, Satapathy BK, Patnaik A, Ray AR. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos Part B Eng 2017;130:132–46. link1

[22] Tammaro L, Di Salle A, Calarco A, De Luca I, Riccitiello F, Peluso G, et al. Multifunctional bioactive resin for dental restorative materials. Polymers 2020;12(2):332. link1

[23] Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HHK. Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater 2012;28(6):642–52. link1

[24] Pandit S, Kim GR, Lee MH, Jeon JG. Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites. J Dent 2011;39(11):780–7. link1

[25] Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J Biomed Mater Res 1999;47(4):516–22. link1

[26] Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013;29(5):495–505. link1

[27] Taira M, Toyooka H, Miyawaki H, Yamaki M. Studies on the radiopacity of experimental dental composite resins containing admixed SiO2–ZrO2 fillers. J Mater Sci Mater M 1995;6(1):5–7. link1

[28] Bowen RL, Cleek GW. A new series of X-ray-opaque reinforcing fillers for composite materials. J Dent Res 1972;51(1):177–82. link1

[29] Chiari MDS, Rodrigues MC, Xavier TA, de Souza EMN, Arana-Chavez VE, Braga RR. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater 2015;31(6):726–33. link1

[30] Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 2011;27 (8):762–9. link1

[31] Samuel SP, Li S, Mukherjee I, Guo Y, Patel AC, Baran G, et al. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater 2009;25 (3):296–301. link1

[32] Wang X, Cai Q, Zhang X, Wei Y, Xu M, Yang X, et al. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater Sci Eng C 2016;59:464–70. link1

[33] Wang R, Zhang M, Liu F, Bao S, Wu T, Jiang X, et al. Investigation on the physical–mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater Sci Eng C 2015;50:266–73. link1

[34] Atai M, Pahlavan A, Moin N. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater 2012;28(2):133–45. link1

[35] Rodríguez HA, Giraldo LF, Casanova H. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins. Dent Mater 2015;31(7):789–98. link1

[36] Waldron K, Wu WD, Wu Z, Liu W, Selomulya C, Zhao D, et al. Formation of monodisperse mesoporous silica microparticles via spray-drying. J Colloid Interface Sci 2014;418:225–33. link1

[37] Dantas D, Pasquali MA, Cavalcanti-Mata M, Duarte ME, Lisboa HM. Influence of spray drying conditions on the properties of avocado powder drink. Food Chem 2018;266:284–91. link1

[38] Glavas L, Odelius K, Albertsson AC. Simultaneous polymerization and polypeptide particle production via reactive spray-drying. Biomacromolecules 2016;17(9):2930–6. link1

[39] Balgis R, Ernawati L, Ogi T, Okuyama K, Gradon L. Controlled surface topography of nanostructured particles prepared by spray-drying process. AIChE J 2017;63(5):1503–11. link1

[40] Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interface Sci 2003;265(2):296–303. link1

[41] Yang DL, Sun Q, Duan YH, Niu H, Wang RL, Wang D, et al. Efficient construction of SiO2 colloidal nanoparticle clusters as novel fillers by a spray-drying process for dental composites. Ind Eng Chem Res 2019;58(39):18178–86. link1

[42] Zhao SN, Yang DL, Wang D, Pu Y, Le Y, Wang JX, et al. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites. J Mater Sci 2019;54(5):3878–92. link1

[43] Yang DL, Cui YN, Sun Q, Liu M, Niu H, Wang JX. Antibacterial activity and reinforcing effect of SiO2–ZnO complex cluster fillers for dental resin composites. Biomater Sci 2021;9(5):1795–804. link1

[44] Kašpar O, Jakubec M, Šteˇpánek F. Characterization of spray dried chitosan-TPP microparticles formed by two- and three-fluid nozzles. Powder Technol 2013;240(5):31–40. link1

[45] Wang C, Hickey AJ. Isoxyl aerosols for tuberculosis treatment: preparation and characterization of particles. AAPS PharmSciTech 2010;11(2):538–49. link1

[46] Maria Leena M, Gover Antoniraj M, Moses JA, Anandharamakrishnan C. Three fluid nozzle spray drying for co-encapsulation and controlled release of curcumin and resveratrol. J Drug Deliv Sci Technol 2020;57:101678. link1

[47] Shi X, Lee Y. Encapsulation of tributyrin with whey protein isolate (WPI) by spray-drying with a three-fluid nozzle. J Food Eng 2020;281(Suppl 2):109992. link1

[48] Kondo K, Niwa T, Danjo K. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique. Eur J Pharm Sci 2014;51:11–9. link1

[49] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968;26(1):62–9. link1

[50] Xia Y, Zhang C, Wang JX, Wang D, Zeng XF, Chen JF. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir 2018;34(23):6806–13. link1

[51] Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos Part B Eng 2020;186:107791. link1

[52] Nagashima S, Yoshida A, Ansai T, Watari H, Notomi T, Maki K, et al. Rapid detection of the cariogenic pathogens Streptococcus mutans and Streptococcus sobrinus using loop-mediated isothermal amplification. Oral Microbiol Immunol 2007;22(6):361–8. link1

[53] Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol 2009;54 (6):595–601. link1

[54] Burke FJT, Crisp RJ, Bell TJ, Healy A, Mark B, McBirnie R, et al. One-year retrospective clinical evaluation of hybrid composite restorations placed in United Kingdom general practices. Quintessence Int 2001;32 (4):293–8. link1

[55] Zalkind MM, Keisar O, Ever-Hadani P, Grinberg R, Sela MN. Accumulation of Streptococcus mutans on light-cured composites and amalgam: an in vitro study. J Esthet Dent 1998;10(4):187–90. link1

Related Research