Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2022.02.014

A Screening Model for Probiotics Against Specific Metabolic Diseases Based on Caco-2 Monolayer Membrane

a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
b School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
c National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
d Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China

Received: 2021-10-20 Revised: 2022-02-22 Accepted: 2022-02-28 Available online: 2022-05-06

Next Previous

Abstract

Recent studies have revealed the potency of probiotics in alleviating metabolic diseases associated with intestinal barrier dysfunction. However, an efficient model for screening probiotic strains against specific metabolic diseases has not been well developed. In the present study, a Caco-2 cell monolayer membrane model treated with tumor necrosis factor (TNF-α) or alcohol was used to evaluate the effect of 139 Lactobacillus strains on intestinal barrier function in vitro. We then selected 11 Lactobacillus strains with different regulatory abilities on the gut barrier to determine their effect against ovariectomy-induced osteoporosis or chronic alcoholic liver injury in vivo. Our results showed that the Pearson coefficient between the data of cell and animal models were 0.82 and −0.97 for the protection of probiotics against osteoporosis and alcoholic liver disease, respectively, suggesting the reliability of the cell model to simulate the in vivo protective effects of probiotics. This study established a potential in vitro approach based on a Caco-2 cell monolayer membrane model for the efficient screening of potential probiotics against specific metabolic diseases such as osteoporosis and chronic alcoholic liver disease.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018;50(8):1‒9. link1

[ 2 ] Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2017;4(1):33‒46. link1

[ 3 ] Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol 2021;11(5):1463‒82. link1

[ 4 ] Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33(4):570‒80. link1

[ 5 ] Jones RM, Mulle JG, Pacifici R. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone 2018;115:59‒67. link1

[ 6 ] Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcoholrelated liver disease. J Hepatol 2019;70(2):260‒72. link1

[ 7 ] Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol 2011;27(6):496‒501. link1

[ 8 ] Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Yamamoto T, et al. Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutr Res 2012;32(4):301‒7. link1

[ 9 ] Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 2018;49(6):1116‒1131.e7. link1

[10] Schepper JD, Collins FL, Rios-Arce ND, Raehtz S, Schaefer L, Gardinier JD, et al. Probiotic Lactobacillus reuteri prevents postantibiotic bone loss by reducing intestinal dysbiosis and preventing barrier disruption. J Bone Miner Res 2019;34(4):681‒98. link1

[11] Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS ONE 2014;9(3):e92368. link1

[12] Nilsson AG, Sundh D, Bäckhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med 2018;284(3):307‒17. link1

[13] Jansson PA, Curiac D, Lazou Ahrén I, Hansson F, Martinsson Niskanen T, Sjögren K, et al. Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: a randomised, doubleblind, placebo-controlled, multicentre trial. Lancet Rheumatol 2019;1(3): e154‒62. link1

[14] Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: a randomized, double-blind, controlled trial. J Am Coll Nutr 2017;36(7):497‒506. link1

[15] Chang B, Sang L, Wang Y, Tong J, Zhang D, Wang B. The protective effect of VSL#3 on intestinal permeability in a rat model of alcoholic intestinal injury. BMC Gastroenterol 2013;13(1):151. link1

[16] Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018;67(5):891‒901. link1

[17] Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 2020;159(3):849‒63. link1

[18] Gu Z, Liu Y, Hu S, You Y, Wen J, Li W, et al. Probiotics for alleviating alcoholic liver injury. Gastroenterol Res Pract 2019;2019:1‒9. link1

[19] Hong M, Han DH, Hong J, Kim DJ, Suk KT. Are probiotics effective in targeting alcoholic liver diseases? Probiotics Antimicro Prot 2019;11(2):335‒47. link1

[20] Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 2008;42(8):675‒82. link1

[21] Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, et al. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019;10. link1

[22] AEMMRAfify, Romeilah RM, Sultan IM, Hussein M. Antioxidant activity and biological evaluations of probiotic bacteria strains. Int J Acad Res 2012;4(6):131‒9. link1

[23] Liu Y, Li Y, Yu X, Yu L, Tian F, Zhao J, et al. Physiological characteristics of Lactobacillus casei strains and their alleviation effects against inflammatory bowel disease. J Microbiol Biotechnol 2021;31(1):92‒103. link1

[24] La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicro Prot 2018;10(1):11‒21. link1

[25] Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019;16(10):605‒16. link1

[26] Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, et al. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 2018;61:129‒39. link1

[27] Hou Q, Ye L, Liu H, Huang L, Yang Q, Turner JR, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ 2018;25(9):1657‒70. link1

[28] Pan T, Guo HY, Zhang H, Liu AP, Wang XX, Ren FZ. Oral administration of Lactobacillus paracasei alleviates clinical symptoms of colitis induced by dextran sulphate sodium salt in BALB/c mice. Benef Microbes 2014;5(3):315‒22. link1

[29] Schroeder BO, Birchenough GMH, Ståhlman M, Arike L, Johansson MEV, Hansson GC, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018;23(1):27‒40.e7. link1

[30] Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019;25(7):1096‒103. link1

[31] Giannetti E, Staiano A. Probiotics for irritable bowel syndrome: clinical data in children. J Pediatr Gastroenterol Nutr 2016;63(1S):S25‒6. link1

[32] AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2014;4(4):CD005496. link1

[33] Xue L, He J, Gao N, Lu X, Li M, Wu X, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 2017;7(1):45176. link1

[34] Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol Res 2022;175:106020. link1

[35] Hsieh FC, Lan CC, Huang TY, Chen KW, Chai CY, Chen WT, et al. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct 2016;7(5):2374‒88. link1

[36] VyLam, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012;26(4):1727‒35. link1

[37] Roh TT, Chen Y, Rudolph S, Gee M, Kaplan DL. In vitro models of intestine innate immunity. Trends Biotechnol 2021;39(3):274‒85. link1

[38] Wu XX, Huang XL, Chen RR, Li T, Ye HJ, Xie W, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation 2019;42(6):2215‒25. link1

[39] Putt KK, Pei R, White HM, Bolling BW. Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions. Food Funct 2017;8(1):406‒14. link1

[40] Tu J, Xu Y, Xu J, Ling Y, Cai Y. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. Int J Biol Macromol 2016;86:848‒56. link1

[41] Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 2010;309(2):184‒92.

[42] Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018;50(2). link1

[43] Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol 2014;80(13):4063‒71. link1

[44] Li BR, Wu J, Li HS, Jiang ZH, Zhou XM, Xu CH, et al. In vitro and in vivo approaches to determine intestinal epithelial cell permeability. J Vis Exp 2018;140:e57032. link1

[45] Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ, et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 2011;179(6):2866‒75. link1

[46] Akbari P, Braber S, Alizadeh A, Verheijden KAT, Schoterman MHC, Kraneveld AD, et al. Galacto-oligosaccharides protect the intestinal barrier by maintaining the tight junction network and modulating the inflammatory responses after a challenge with the mycotoxin deoxynivalenol in human Caco-2 cell monolayers and B6C3F1 mice. J Nutr 2015;145(7):1604‒13. link1

[47] Salazar M, Hernandes L, Ramos AL, BdOSalazar, Micheletti KR, Paranhos LR, et al. Effect of alendronate sodium on tooth movement in ovariectomized rats. Arch Oral Biol 2015;60(5):776‒81. link1

[48] Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI. Lactobacillus helveticus (ATCC 27558) upregulates Runx2 and Bmp2 and modulates bone mineral density in ovariectomy-induced bone loss rats. Clin Interv Aging 2018;13:1555‒64. link1

[49] Zhang C, Zhao Y, Jiang J, Yu L, Tian F, Zhao J, et al. Identification of the key characteristics of Bifidobacterium longum strains for the alleviation of ulcerative colitis. Food Funct 2021;12(8):3476‒92. link1

[50] Eor JY, Tan PL, Son YJ, Lee CS, Kim SH. Milk products fermented by Lactobacillus strains modulate the gut‒bone axis in an ovariectomised murine model. Int J Dairy Technol 2020;73(4):743‒56. link1

[51] Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W, et al. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 2016;82(14):4429‒40. link1

[52] Liu Y, Chen R, Li L, Dong R, Yin H, Wang Y, et al. The triterpenoids-enriched extracts from Antrodia cinnamomea mycelia attenuate alcohol-induced chronic liver injury via suppression lipid accumulation in C57BL/6 mice. Food Sci Hum Wellness 2021;10(4):497‒507. link1

[53] Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom 2015;20(2):107‒26. link1

[54] Kim DE, Kim JK, Han SK, Jang SE, Han MJ, Kim DH. Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 alleviate bacterial vaginosis and osteoporosis in mice by suppressing NF-κB-linked TNF-α expression. J Med Food 2019;22(10):1022‒31. link1

[55] Yu H, Zhou W, Yan W, Xu Z, Xie Y, Zhang P. LncRNA CASC11 is upregulated in postmenopausal osteoporosis and is correlated with TNF-α. Clin Interv Aging 2019;14:1663‒9. link1

[56] Zha L, He L, Liang Y, Qin H, Yu B, Chang L, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother 2018;102:369‒74. link1

[57] Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNFalpha. J Clin Invest 2000;106(10):1229‒37. link1

[58] Cosman F, Cummings S, Lindsay R. How long should patients with osteoporosis be treated with bisphosphanates? J Womens Health Gend Based Med 2000;9 (2):81‒4. link1

[59] Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009;33 (10):1836‒46. link1

[60] Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol 1999;276(4):G965‒74. link1

[61] Banan A, Fields JZ, Decker H, Zhang Y, Keshavarzian A. Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J Pharmacol Exp Ther 2000;294(3):997‒1008.

[62] Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber‒DeCarli diet—a flagship model for experimental alcoholic liver disease. Alcohol Clin Exp Res 2018;42(10):1828‒40. link1

[63] Miyauchi E, Morita H, Tanabe S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J Dairy Sci 2009;92(6):2400‒8. link1

[64] Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012;303(1):G32‒41. link1

[65] Wang C, Li S, Hong K, Yu L, Tian F, Zhao J, et al. The roles of different Bacteroides fragilis strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food Funct 2021;12(18):8300‒13. link1

[66] Grosheva I, Zheng D, Levy M, Polansky O, Lichtenstein A, Golani O, et al. Highthroughput screen identifies host and microbiota regulators of intestinal barrier function. Gastroenterology 2020;159(5):1807‒23. link1

[67] Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin Nutr 2020;39(5):1315‒23. link1

[68] Wang L, Hu L, Xu Qi, Yin B, Fang D, Wang G, et al. Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice. Int J Mol Sci 2017;18(2):318. link1

[69] Kim S, Shin YC, Kim TY, Kim Y, Lee YS, Lee SH, et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 2021;13(1):1892441. link1

[70] Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, et al. Bifidobacteria exert speciesspecific effects on constipation in BALB/c mice. Food Funct 2017;8(10):3587‒600. link1

[71] Wang G, Jiao T, Xu Y, Li D, Si Q, Hao J, et al. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiotadependent pathways. Food Funct 2020;11(7):6115‒27. link1

[72] Macshut M, Kaido T, Yao S, Miyachi Y, Sharshar M, Iwamura S, et al. Visceral adiposity is an independent risk factor for high intra-operative blood loss during living-donor liver transplantation; could preoperative rehabilitation and nutritional therapy mitigate that risk? Clin Nutr 2021;40(3):956‒65. link1

[73] Bhat MI, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) supplementation renders prophylactic action against Escherichia coli impaired intestinal barrier function through tight junction modulation. Lebensm Wiss Technol 2020;123:109118. link1

[74] Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 2019;10(6):696‒711. link1

[75] Mallappa RH, Singh DK, Rokana N, Pradhan D, Batish VK, Grover S. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. Lebensm Wiss Technol 2019;105:272‒81. link1

[76] Vanhaecke T, Aubert P, Grohard PA, Durand T, Hulin P, Paul-Gilloteaux P, et al. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats. Neurogastroenterol Motil 2017;29(8):e13069. link1

[77] Lee CS, Kim JY, Kim BK, Lee IO, Park NH, Kim SH. Lactobacillus-fermented milk products attenuate bone loss in an experimental rat model of ovariectomy-induced post-menopausal primary osteoporosis. J Appl Microbiol 2021;130(6):2041‒62. link1

[78] Kim JG, Lee E, Kim SH, Whang KY, Oh S, Imm JY. Effects of a Lactobacillus casei 393 fermented milk product on bone metabolism in ovariectomised rats. Int Dairy J 2009;19(11):690‒5. link1

[79] Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, et al. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct 2021;12(3):1121‒34. link1

[80] Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J 2020;19:89‒107.

[81] Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther 2004;11(S1):S64‒6. link1

[82] Han K, Wang J, Seo JG, Kim H. Efficacy of double-coated probiotics for irritable bowel syndrome: a randomized double-blind controlled trial. J Gastroenterol 2017;52(4):432‒43. link1

[83] Wang Y, Xie Q, Sun S, Huang B, Zhang Y, Xu Y, et al. Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis. Appl Microbiol Biotechnol 2018;102 (24):10713‒27. link1

[84] Li X, Chu Q, Huang Y, Xiao Y, Song L, Zhu S, et al. Consortium of probiotics attenuates colonization of Clostridioides difficile. Front Microbiol 2019;10:2871. link1

[85] Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018;126(5):1763‒8. link1

[86] Nahler G. Pearson correlation coefficient. In: Nahler G, editor. Dictionary of pharmaceutical medicine. Vienna: Springer Vienna; 2009. link1

[87] Patel A, Iliopoulos F, Caspers PJ, Puppels GJ, Lane ME. In vitro‒in vivo correlation in dermal delivery: the role of excipients. Pharmaceutics 2021; 13(4):542. link1

Related Research