Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2022.03.023

Achieving 12.0% Solar-to-Hydrogen Efficiency with a Trimetallic-Layer-Protected and Catalyzed Silicon Photoanode Coupled with an Inexpensive Silicon Solar Cell

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received: 2021-07-30 Revised: 2022-05-06 Accepted: 2023-05-10 Available online: 2023-05-18

Next Previous

Abstract

n-Type silicon (n-Si), with surface easily oxidized and passivated in an aqueous electrolyte, has suffered from sluggish oxygen evolution reaction (OER) kinetics for photoelectrochemical (PEC) water splitting. Herein, a trimetallic Ni0.9Fe0.05Co0.05 protective layer is successfully electrodeposited on a p+n-Si substrate by underpotential deposition. The prepared Ni0.9Fe0.05Co0.05/p+n-Si photoanode exhibits excellent stability and activity for PEC water oxidation, with a low onset potential of 0.938 V versus a reversible hydrogen electrode (RHE) and a remarkable photocurrent density of about 33.1 mAcm-2 at 1.23 V versus RHE, which significantly outperforms the Ni/p+n-Si photoanode as a reference. It is revealed that the incorporation of Fe into the Ni layer creates a large band bending at the Ni0.9Fe0.05Co0.05/p+n-Si interface, promoting interfacial charge separation. Moreover, the incorporation of Co produces abundant Ni3+ and oxygen vacancies (Ov) that act as active sites to accelerate the OER kinetics, synergistically contributing to a major enhancement of PEC water oxidation activity. Encouragingly, by connecting the Ni0.9Fe0.05Co0.05/p+n-Si photoanode to an inexpensive Si solar cell, an integrated photovoltaic/PEC (PV/PEC) device achieved a solar-to-hydrogen conversion efficiency of as high as 12.0% without bias. This work provides a facile approach to design efficient and stable n-Si-based photoanodes with a deep understanding of the structure–activity relationship, which exhibits great potential for the integration of low-cost PV/PEC devices for unassisted solar-driven water splitting. 

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 2006;103(43):15729‒35. Corrected in: Proc Natl Acad Sci USA 2007;104(50):20142. link1

[ 2 ] Vijselaar W, Kunturu PP, Moehl T, Tilley SD, Huskens J. Tandem cuprous oxide/ silicon microwire hydrogen-evolving photocathode with photovoltage exceeding 1.3 V. ACS Energy Lett 2019;4(9):2287‒94. link1

[ 3 ] Sun K, Shen S, Liang Y, Burrows PE, Mao SS, Wang D. Enabling silicon for solarfuel production. Chem Rev 2014;114(17):8662‒719. link1

[ 4 ] Chu S, Vanka S, Wang Y, Gim J, Wang Y, Ra YH, et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett 2018;3(2):307‒14. link1

[ 5 ] Shaner MR, Hu S, Sun K, Lewis NS. Stabilization of Si microwire arrays for solardriven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ Sci 2015;8(1):203‒7. link1

[ 6 ] Mei B, Seger B, Pedersen T, Malizia M, Hansen O, Chorkendorff I, et al. Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films. J Phys Chem Lett 2014;5(11):1948‒52. link1

[ 7 ] Scheuermann AG, Lawrence JP, Kemp KW, Ito T, Walsh A, Chidsey CED, et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat Mater 2016;15(1):99‒105. link1

[ 8 ] Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014;344(6187):1005‒9. link1

[ 9 ] Yu Y, Sun C, Yin X, Li J, Cao S, Zhang C, et al. Metastable intermediates in amorphous titanium oxide: a hidden role leading to ultra-stable photoanode protection. Nano Lett 2018;18(8):5335‒42. link1

[10] Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013;342(6160):836‒40. link1

[11] Sun K, McDowell MT, Nielander AC, Hu S, Shaner MR, Yang F, et al. Stable solardriven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J Phys Chem Lett 2015;6(4):592‒8. link1

[12] Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv Sci 2020;7(6):1902102. link1

[13] Hill JC, Landers AT, Switzer JA. An electrodeposited inhomogeneous metal‒insulator‒semiconductor junction for efficient photoelectrochemical water oxidation. Nat Mater 2015;14(11):1150‒5. link1

[14] Zhou X, Liu R, Sun K, Friedrich D, McDowell MT, Yang F, et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ Sci 2015;8(9):2644‒9. link1

[15] Oh S, Jung S, Lee YH, Song JT, Kim TH, Nandi DK, et al. Hole-selective CoOx/SiOx/ Si heterojunctions for photoelectrochemical water splitting. ACS Catal 2018;8 (10):9755‒64. link1

[16] Chen L, Wu S, Ma D, Shang A, Li X. Optoelectronic modeling of the Si/a-Fe2O3 heterojunction photoanode. Nano Energy 2018;43(10):177‒83. link1

[17] Mei B, Permyakova AA, Frydendal R, Bae D, Pedersen T, Malacrida P, et al. Irontreated NiO as a highly transparent p-type protection layer for efficient Sibased photoanodes. J Phys Chem Lett 2014;5(20):3456‒61. link1

[18] Cai Q, Hong W, Jian C, Liu W. Ultrafast hot ion-exchange triggered electrocatalyst modification and interface engineering on silicon photoanodes. Nano Energy 2020;70:104485. link1

[19] Yu X, Yang P, Chen S, Zhang M, Shi G. NiFe alloy protected silicon photoanode for efficient water splitting. Adv Energy Mater 2017;7(6):1601805. link1

[20] Cai Q, Hong W, Jian C, Li J, Liu W. Insulator layer engineering toward stable Si photoanode for efficient water oxidation. ACS Catal 2018;8(10):9238‒44. link1

[21] Li C, Huang M, Zhong Y, Zhang L, Xiao Y, Zhu H. Highly efficient NiFe nanoparticle decorated Si photoanode for photoelectrochemical water oxidation. Chem Mater 2019;31(1):171‒8. link1

[22] Chen J, Xu G, Wang C, Zhu K, Wang H, Yan S, et al. High-performance and stable silicon photoanode modified by crystalline Ni@amorphous Co core‒shell nanoparticles. ChemCatChem 2018;10(21):5025‒31. link1

[23] Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 2012;3(3):399‒404. link1

[24] Stoerzinger KA, Qiao L, Biegalski MD, Shao-Horn Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J Phys Chem Lett 2014;5(10):1636‒41. link1

[25] Kim TJ, Park SA, Chang S, Chun HH, Kim YT. Effect of a surface area and a dband oxidation state on the activity and stability of RuOx electrocatalysts for oxygen evolution reaction. Bull Korean Chem Soc 2015;36(7):1874‒7. link1

[26] Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 2011;257(7):2717‒30. link1

[27] Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 2009;41(4):324‒32. link1

[28] Kim KS, Winograd N. X-ray photoelectron spectroscopic studies of nickel‒ oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 1974;43(2):625‒43. link1

[29] Guo B, Batool A, Xie G, Boddula R, Tian L, Jan SU, et al. Facile integration between Si and catalyst for high-performance photoanodes by a multifunctional bridging layer. Nano Lett 2018;18(2):1516‒21. link1

[30] Oh K, Mériadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, et al. Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes. Energy Environ Sci 2018;11(9):2590‒9. link1

[31] Cai Q, Hong W, Jian C, Liu W. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Nanoscale 2020;12(14):7550‒6. link1

[32] Peng Z, Jia DS, Al-Enizi AM, Elzatahry AA, Zheng GF. From water oxidation to reduction: homologous Ni‒Co based nanowires as complementary water splitting electrocatalysts. Adv Energy Mater 2015;5(9):1402031. link1

[33] Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Amorphous nanostructured FeOOH and Co‍‒‍Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 2016;21:145‒53. link1

[34] Dong G, Fang M, Zhang J, Wei RJ, Shu L, Liang XG, et al. In situ formation of highly active Ni‒Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J Mater Chem A 2017;5(22):11009‒15. link1

[35] Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 2010;114(1):111‒9. link1

[36] Jiménez VM, Fernández A, Espinós JP, González-Elipe AR. The state of the oxygen at the surface of polycrystalline cobalt oxide. J Electron Spectrosc 1995;71(1):61‒71. link1

[37] Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 2015;54(25):7399‒404. link1

[38] Yang J, Cooper JK, Toma FM, Walczak KA, Favaro M, Beeman JW, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat Mater 2017;16(3):335‒41. link1

[39] Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe‒OOH catalysts. ACS Energy Lett 2018;3(7):1515‒20. link1

[40] Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 2013;4(1):2390. link1

[41] Gurrentz JM, Rose MJ. Non-catalytic benefits of Ni(II) binding to an Si(111)-PNP construct for photoelectrochemical hydrogen evolution reaction: metal ion induced flat band potential modulation. J Am Chem Soc 2020;142 (12):5657‒67. link1

[42] Wang X, Xie J, Li CM. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J Mater Chem A 2015;3(3):1235‒42. link1

[43] McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 2015;137(13):4347‒57. link1

[44] Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016;354(6318):1414‒9. link1

[45] Bikkarolla SK, Papakonstantinou P. CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 2015;281:243‒51. link1

[46] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 2012;134(9):4294‒302. link1

[47] Fu Y, Lu YR, Ren F, Xing Z, Chen J, Guo P, et al. Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation. Solar RRL 2020;4(1):1900349. link1

[48] Zhang B, Wang Z, Huang B, Zhang X, Qin X, Li H, et al. Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 2016;28(18):6613‒20. link1

[49] Geng W, Liu H, Yao X. Enhanced photocatalytic properties of titania‒graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 2013;15(16):6025‒33. link1

Related Research