Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2016, Volume 18, Issue 3 doi: 10.15302/J-SSCAE-2016.03.008

Development Strategy for Fisheries Biotechnology

1.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong , China;

2. Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao 266273, China;

3. Centre for Aquaculture Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China

Funding project:中国工程院重点咨询项目 “水产养殖业十三五规划战略研究”(2014-XZ-19-3);国家自然科学基金重点项目(31130057);山东省泰山学者攀登计划专家项目 Received: 2016-04-27 Revised: 2016-05-15 Available online: 2016-06-29 13:33:03.000

Next Previous

Abstract

The recent developments in fisheries biotechnology are reviewed in this paper, including aquatic animal genome sequencing, genetic mapping construction, screening of molecular marker or genes for economically important traits, genome editing, genomic selection, and cell culture and germplasm conservation. The main problems addressed in the study of fisheries biotechnology are also analyzed, including the incomplete gene function analysis platform, the hysteresis of breeding techniques on sex control and disease resistance, the ongoing of genome editing and genomic selection and so on. The key technological breakthroughs that are needed to solve these problems are outlined. Meanwhile, this paper proposes a key major research project to be implemented, during the 13th Five Year Plan, in order to develop and utilize aquatic animal genome resources, analyze their commercially important genetic traits, and construct a megadata platform for aquatic organisms.

References

[ 1 ] Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature. 2011; 477(7363): 207–210. link1

[ 2 ] Jones F C, Grabherr M G, Chan Y F, et al. The genomic basis of adaptive evolution in threespine sticklebacks [J]. Nature. 2012; 484(7392): 55–61. link1

[ 3 ] Nakamura Y, Morib K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of pacific bluefin tuna [J]. PNAS USA. 2013; 110(27): 11061–11066. link1

[ 4 ] Smith J J, Kuraku S, Holt C, et al. Sequencing of the Sea Lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution [J]. Nat Genet. 2013; 45(4): 415–421. link1

[ 5 ] Amemiya C T, Alfoldi J, Lee A P, et al. The African Coelacanth genome provides insights into tetrapod evolution [J]. Nature. 2013; 496(7445): 311–316. link1

[ 6 ] Berthelot C, Brunet F, Chalopin D, et al. The Rainbow Trout genome provides novel insights into evolution after whole-genome duplication in vertebrates [J]. Nat commun. 2014; 5: 3657. link1

[ 7 ] David B, Catherine E W, Yang I L, et al. The genomic substrate for adaptive radiation in African Cichlid Fish [J]. Nature. 2014; 513(7518): 375–381. link1

[ 8 ] Zhang G, Fang X, Guo X, et al. The Oyster genome reveals stress adaptation and complexity of shell formation [J]. Nature. 2012; 490(7418): 49–54. link1

[ 9 ] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat Genet. 2014; 46(3): 253–260. link1

[10] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp (Cyprinus carpio) [J]. Nat Genet. 2014; 46(11): 1212–1219. link1

[11] Wu C, Zhang D, Kan M, et al. The draft genome of the Large Yellow Croaker reveals well-developed innate immunity [J]. Nat Commun. 2014; 5: 5227. link1

[12] Wang Y, Lu Y, Zhang Y, et al. The draft genome of the Grass Carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat Genet. 2015; 47(8): 625–631. link1

[13] You X X, Bian C, Zan Q J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes [J]. Nat Commun. 2014; 5: 5594. link1

[14] Gao Y, Gao Q, Zhang H, et al. Draft sequencing and analysis of the genome of pufferfish takifugu flavidus [J]. DNA Res. 2014; 21(6): 627–637. link1

[15] Ye N, Zhang X, Miao M, et al. Saccharina genomes provide novel insight into kelp biology [J]. Nat Commun. 2015; 6: 6986. link1

[16] Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature. 2002; 417(6888): 559–563. link1

[17] Hattori R S, Murai Y, Oura M, et al. A Y-linked anti-mullerian hormone duplication takes over a critical role in sex determinat ion [J]. PNAS USA. 2012; 109(8): 2955–2959. link1

[18] Myosho T, Otake H, Masuyama H, et al. Tracing the emergence of a novel sex determining gene in medaka, Oryzias luzonensis [J]. Genetics. 2012; 191(1): 163–170. link1

[19] Kamiya T, Kai W, Tasumi S, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, takifugu rubripes (Fugu) [J]. PLoS Genet. 2012; 8(7): e1002798. link1

[20] Yano A, Guyomard R, Nicol B, et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss [J]. Curr Biol. 2012; 22(15): 1423–1428. link1

[21] Meng L, Zhu Y, Zhang N, et al. Cloning and characterization of tesk1, a novel spermatogenesis-related gene, in half-smooth tongue sole (Cynoglossus semilaevis) [J]. PLoS One. 2014; 9(10): e107922. link1

[22] Hu Q, Zhu Y. Liu Y, et al. Cloning and characterization of wnt4a gene and evidence for positive selection in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Sci Rep. 2014; 4: 7167. link1

[23] Shao C, Liu G, Liu S, et al. Characterization of the cyp19a1a gene from a BAC sequence in half-smooth tongue sole (Cynoglossus semilaevis) and analysis of its conservation among teleosts [J]. Acta Oceanol Sin. 2014; 32(8): 35–43. link1

[24] Li M H, Sun Y L, Zhao J Y, et al. A tandem duplicate of anti-müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in nile tilapia, Oreochromis niloticus [J]. PLoS Genet. 2015; 11(11): e1005678. link1

[25] Liu Y, Zhang Y B, Liu T K, et al. Lineage-specific expansion 055中国工程科学 2016 年 第 18 卷 第 3 期of IFIT gene family: an insight into coevolution with IFN gene family [J]. PloS One. 2013; 8: e66859.

[26] Sun F, Zhang Y B, Jiang J, et al. Gig1, a novel antiviral effector involved in fish interferon response [J]. Virology. 2014; 448: 322–332. link1

[27] Wang B, Zhang Y B, Liu T K, et al. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway [J]. Dev Comp Immunol. 2014; 47(1): 140–149. link1

[28] Zhang J, Zhang Y B, Wu M, et al. Fish MAVS is involved in RLR pathway-mediated IFN response [J]. Fish Shellfish Immunol. 2014; 41(2): 222–230. link1

[29] Wang N, Wang X, Yang C, et al. Molecular cloning, subcelluar location and expression profile of signal transducer and activator of transcription 2 (STAT2) from turbot, Scophthalmus maximus [J]. Fish Shellfish Immunol. 2014; 35(4): 1200–1208. link1

[30] Wang N, Wang X, Yang C, et al. Molecular cloning and multifunctional characterization of GRIM-19 (gene associated with retinoid-interferon-induced mortality 19) homologue from turbot (Scophthalmus maximus) [J]. Dev Comp Immunol. 2014; 43(1): 96–105. link1

[31] Chen S, Li W, Meng L, et al. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus) [J]. Fish Shellfish Immunol. 2014; 22(3): 172–181. link1

[32] Yang C, Wang X, Zhang B, et al. Screening and analysis of PoAkirin1 and two related genes in response to immunological stimulants in the Japanese flounder (Paralichthys olivaceus) [J]. BMC Mol Biol. 2013; 14: 10. link1

[33] Zeng Y, Xiang J, Lu Y, et al. SghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities [J]. Dev Comp Immunol. 2015; 48(1): 151–163. link1

[34] Lu Y, Wang Q, Liu Y, et al. Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mol Biol Rep. 2014; 41(6): 4093–4101. link1

[35] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic Salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns [J]. BMC Genomics. 2011; 12: 615. link1

[36] Guyomard R, Boussaha M, Krieg F, et al. A synthetic Rainbow Trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts [J]. BMC Genetics. 2012; 13: 15. link1

[37] Carlson B M, Onusko S W, Gross J B. A high-density linkage map for astyanax mexicanus using genotyping-by-sequencing technology [J]. Genes, Genomes, Genetics (Bethesda). 2014; 5(2): 241–251. link1

[38] Li Y, Liu S, Qin Z, et al. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish [J]. DNA Res. 2015; 22(1): 39–52. link1

[39] Shao C, Niu Y, Pasi R, et al. Genome-wide snp identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus) applied to QTL mapping of vibrio anguillarum disease resistance and comparative genomic analysis [J]. DNA Res. 2015; 22(2): 161–170. link1

[40] Wang W, Hu Y, Ma Y, et al. High-density genetic linkage mapping in turbot (Scophthalmus maximus) based on SNP markers and major sex-and growth-related regions detection [J]. PLoS One. 2015; 10(3): e0120410. link1

[41] Zhang X, Zhang Y, Zheng X, et al. A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio) [J]. Mar Biotechnol. 2013; 15(3): 275–312. link1

[42] Li H, Liu X, Zhang G. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians) and its application in size-related QTL analysis [J]. PLoS One. 2012; 7(10): e46926. link1

[43] Yu Y, Zhang X J, Yuan J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the pacific white shrimp litopenaeus vannamei [J]. Sci Rep. 2015; 5: 15612. link1

[44] Jiao W, Fu X, Dou J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc [J]. DNA Res. 2014; 21(1): 85–101. link1

[45] Zhang N, Zhang L, Tao Y, et al. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus [J]. BMC Genomics. 2015; 16(1): 189. link1

[46] Ninwichia P, Peatman E, Perera D, et al. Identification of a sex-linked marker for channel catfish [J]. Anim Genet. 2011; 43(4): 476–477. link1

[47] Lipinska A P, Ahmed S, Peters A F, et al. Development of PCR-based markers to determine the sex of kelps [J]. PLoS One. 2015; 10(10): e0140535. link1

[48] Campbell N R, LaPatra S E, Overturf K, et al. Association mapping of disease resistance traits in rainbow rout using restriction site associated DNA sequencing [J]. Genes, Genomes, Genetics (Bethesda). 2014; 4(12): 2473–2481. link1

[49] Rodriguez-Ramilo S T, Fernandez J, Toro M A, et al. Uncovering QTL for resistance and survival time to philasterides dicentrarchi in turbot (Scophthalmus maximus) [J]. Anim Genet. 2013; 44(2): 149–157. link1

[50] Dutta S, Biswas S, Mukherjee K, et al. Identification of RAPD-SCAR marker linked to white spot syndrome virus resistance in populations of giant black tiger shrimp, penaeus monodon fabricius [J]. J Fish Dis. 2014; 37(5): 471–480. link1

[51] 陈松林. 鱼类性别控制与细胞工程育种[M]. 北京: 科学出版社, 2013.

[52] Chen S L, Li J, Deng S P, et al. Isolation of female specific AFLP markers and identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mar Biotechnd (NY) 2007; 9(2): 272–280. link1

[53] Chen S L, Ji X S, Shao C W, et al. Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mar Biotechnol. 2012; 14(1): 120–128. link1

[54] Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish [J]. Int J Biol Sci. 2013; 9(10): 1043–1049. link1

[55] Xu D D, Lou B, Xu H X, et al. Isolation and characterization of male-specific DNA markers in the rock bream oplegnathus 056综合研究   水产生物技术发展战略研究Fasciatus [J]. Mar Biotechnol. 2013; 15(2): 221–229. link1

[56] Liu Y, Bi Y, Gu J, et al. Localization of a female-specific marker on the chromosomes of the brown seaweed saccharina japonica using fluorescence in situ hybridization [J]. PLoS One. 2012; 7(11): e48784. link1

[57] Wang L, Fan C, Liu Y, et al. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis [J]. Mar Biotechnol. 2014; 16(5): 513–521. link1

[58] Robinson N, Hayes B. Modelling the use of gene expression profiles with selective breeding for improved disease resistance in atlantic salmon (Salmo salar) [J]. Aquaculture. 2008; 285(1): 38–46. link1

[59] Liu S, Sun L, Li Y, et al. Development of the Catfish 250K SNP array for genome-wide association studies [J]. BMC Res Notes. 2014; 7: 135. link1

[60] Tatsumi Y, Takeda M, Matsuda M, et al. TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development [J]. FEBS Lett. 2014; 588(24): 4543–4550. link1

[61] Ansai S, Kinoshita M. Targeted mutagenesis using CRISPR/Cas system in medaka [J]. Biol Open. 2014; 3(5): 362–371. link1

[62] Edvardsen R B, Leininger S, Kleppe L, et al. Targeted mutagenesis in atlantic salmon (Salmo salar) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation [J]. PLoS One. 2014; 9(9): e108622. link1

[63] Li M H, Yang H H, Li M R, et al. Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]. Endocrinology. 2013; 154: 4814–4825. link1

[64] Zhong Z M, Niu P F, Wang M Y, et al. Targeted disruption of sp7 and myostatin with CRISPR/Cas9 results in severe bone defects and more muscular cells in common carp [J]. Sci Rep. 2016; 6: 22953. link1

[65] 陈松林, 崔忠凯, 郑汉其, 等. 一种基于基因组编辑的海水鲆鲽鱼类种质构建方法及应用[P]. 201610162019. 5. Chen S L, Cui Z K, Zheng H Q, et al. A genome editing-based breeding method in flatfish and its application [P]. 201610162019.

[66] Swaminathan T R, Basheer V S, Gopalakrishnan A, et al. Establishment of caudal fin cell lines from tropical ornamental fishes Puntius fasciatus and Pristolepis fasciata endemic to the western ghats of India [J]. Acta Tropica. 2013; 28(3): 536– 541. link1

[67] Abdul Majeed S, Nambi K S, Taju G, et al. Development, characterization and application of a new fibroblastic-like cell line from kidney of a freshwater air breathing fish channa striatus (Bloch, 1793) [J]. Acta Tropica. 2013; 127(1): 25–32. link1

[68] Jayesh P, Jose S, Philip R, et al. A novel medium for the development of in vitro cell culture system from penaeus monodon [J]. Cytotechnology. 2013; 65(3): 307–322. link1

[69] Mercurio S, Di Benedetto C, Sugni M, et al. Primary cell cultures from sea urchin ovaries: a new experimental tool [J]. In Vitro Cell Dev Biol Anim. 2014; 50(2): 139–145. link1

[70] 陈松林, 秦启伟. 鱼类细胞培养理论与技术[M]. 北京: 科学出版社, 2011.

[71] Sun A, Wang T Z, Wang N. e t a l . Es tabl i shment and characterization of an ovarian cell line from half-smooth tongue sole (Cynoglossus semilaevis) [J]. J Fish Biol. 2015; 86(1): 46–59.

[72] Sun A, Chen S, Gao F, et al. Establishment and characterization of a gonad cell line from half-smooth tongue sole (Cynoglossus semilaevis) pseudomale [J]. Fish Physiol Biochem. 2015; 41(3): 673–683. link1

[73] Wang T Z, Sun A, Wang N. e t a l . Es tabl i shment and characterization of an astroglial cell line derived from the brain of half-smooth tongue sole (Cynoglossus semilaevis) [J]. Zool Res. 2015; 36 (5): 305–310.

[74] 刘肖峰, 陈松林, 沙珍霞, 等. 云纹石斑鱼心脏细胞系的建立与鉴定[J]. 农业生物技术学报, 2015, 23(10): 1394–1400. link1

[75] Keivanloo S, Sudagar M . Feasibility studies on vitrification of persian sturgeon (Acipenser persicus) embryos [J]. J Aquac Res Dev. 2013; 4: 172. link1

[76] Tian Y, Jiang J, Song L, et al. Effects of cryopreservation on the survival rate of the seven-band grouper (Epinephelus septemfasciatus) embryos [J]. Cryobiology. 2015; 71(3): 499–506. link1

Related Research