Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 6 doi: 10.15302/J-SSCAE-2023.06.010

Research Progress and Key Technologies of Quantum Network Systems

State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications), Beijing 100876, China

Funding project:Chinese Academy of Engineering project “Strategic Research on the Development of Quantum Information Network” (2022-HYZD-01) Received: 2023-10-11 Revised: 2023-10-30 Available online: 2023-11-22

Next Previous

Abstract

The rapid development of quantum information has brought new opportunities and challenges to modern information technologies. As one of the popular research directions in the field of quantum information, quantum networks aim to utilize the fundamental properties of quantum mechanics to achieve long-distance (secure) communications or provide computational capabilities superior to classical computing networks through distributed computing. The study of quantum networks holds great significance in advancing the practicality of quantum information. To gain a comprehensive understanding of the development trajectory of quantum networks, this study categorizes quantum networks into three types: quantum cryptography, quantum cloud computing, and quantum teleportation networks, based on different application scenarios and technical approaches. It provides comprehensive reviews of both domestic and international research progress and the challenges faced in each aspect. Furthermore, in conjunction with the practical implementation of quantum networks, the key technologies that need to be overcome in the development of quantum network systems, involving link establishment, information transmission, networking protocols, and physical hardware, are summarized. Overall, the development of quantum networks is still in the primary stage. At this stage, actively addressing challenges and seizing opportunities are of great significance to enhance the technological prowess of China. Therefore, to promote the development of quantum network systems in China, suggestions are proposed from three aspects: strengthening investment in the research and development of fundamental hardware infrastructure, attaching importance to the theoretical research of quantum networks, and enhancing interdisciplinary research and talent cultivation.

Figures

图1

References

[ 1 ] Karlsson A, Bourennane M‍‍. Quantum teleportation using three particle entanglement [C]‍. Glasgow: European Quantum Electronics Conference, 1998‍.

[ 2 ] Bennett C H‍. Quantum cryptography: Public key distribution and coin tossing [C]‍. Bangalore: IEEE International Conference on Computers, Systems, and Signal Processing, 1984‍.

[ 3 ] Shor P W‍. Algorithms for quantum computation: Discrete logarithms and factoring [C]‍. Santa Fe: The 35th Annual Symposium on Foundations of Computer Science, 2002.

[ 4 ] Grover L K‍. Quantum mechanics helps in searching for a needle in a haystack [J]‍. Physical Review Letters, 1997, 79(2): 325‒328‍.

[ 5 ] 郭光灿‍. 量子信息技术研究现状与未来 [J]‍. 中国科学: 信息科学, 2020, 50(9): 1395‒1406‍.
Guo G C‍. Research status and future of quantum information technology [J]‍. Scientia Sinica Informationis, 2020, 50(9): 1395‒1406‍.

[ 6 ] Gyongyosi L, Imre S‍. Advances in the quantum Internet [J]‍. Communications of the ACM, 2022, 65(8): 52‒63‍.

[ 7 ] Elliott C, Yeh H‍. DARPA quantum network testbed [R]‍. New York: BBN Technologies Cambridge, 2007‍.

[ 8 ] Peev M, Poppe A, Maurhart O, et al‍. The SECOQC quantum key distribution network in Vienna [C]‍. Vienna: The 35th European Conference on Optical Communication, 2009‍.

[ 9 ] Sasaki M, Fujiwra M, Ishizuka H, et al‍. Tokyo QKD network and the evolution to secure photonic network [C]‍. CLEO: 201-Laser Science to Photonic Applications, 2011‍.

[10] Stanley M, Gui Y, Unnikrishnan D, et al‍. Recent progress in quantum key distribution network deployments and standards [J]‍. Journal of Physics: Conference Series, 2022, 2416(1): 012001‍.

[11] IDQ‍. A new 380 km long intercity QKD infrastructure in Poland‍ [EB/OL]‍. (2022-09-05)[2023-09-28]‍. https://www‍.idquantique‍.com/a new 380 km long intercity qkd infrastructure in poland/‍.

[12] Chen W, Han Z F, Zhang T, et al‍. Field experiment on a "star type" metropolitan quantum key distribution network [J]‍. IEEE Photonics Technology Letters, 2009, 21(9): 575‒577‍.

[13] 中国科学技术大学‍. 世界首条量子保密通信干线开通‍ [EB/OL]‍. (2017-10-19)[2023-09-28]‍. https://www‍.cas‍.cn/jh/201711/t20171120_4622633‍.shtml‍.
University of Science and Technology of China‍. The world´s first quantum secured communication backbone is now operational‍ [EB/OL]‍. (2017-10-19)[2023-09-28]‍. https://www‍.cas‍.cn/jh/201711/t20171120_4622633‍.shtml‍.

[14] Chen Y A, Zhang Q, Chen T Y, et al‍. An integrated space-to-ground quantum communication network over 4, 600 kilometres [J]‍. Nature, 2021, 589: 214‒219‍.

[15] Chen J P, Zhang C, Liu Y, et al‍. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas [J]‍. Nature Photonics, 2021, 15: 570‒575‍.

[16] Wang L J, Zhang K Y, Wang J Y, et al‍. Experimental authentication of quantum key distribution with post-quantum cryptography [J]‍. NPJ Quantum Information, 2021, 7: 67‍.

[17] 安徽网‍. 合肥建成全国最大量子保密通信城域网‍ [EB/OL]‍.(2022-08-26)[2023-09-28]‍. http://www‍.ahwang‍.cn/hefei/20220826/2419436‍.html‍.
Anhui Network‍. Hefei has established the largest quantum secured communication metropolitan area network in China‍ [EB/OL]‍. (2022-08-26)[2023-09-28]‍. http://www‍.ahwang‍.cn/hefei/20220826/2419436‍.html‍.

[18] Ralph T C‍. Continuous variable quantum cryptography [J]‍. Physical Review A, 1999, 61: 010303‍.

[19] Lo H K, Curty M, Qi B‍. Measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2012, 108(13): 130503‍.

[20] Lucamarini M, Yuan Z L, Dynes J F, et al‍. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters [J]‍. Nature, 2018, 557: 400‒403‍.

[21] Fossier S, Diamanti E, Debuisschert T, et al‍. Field test of a continuous-variable quantum key distribution prototype [J]‍. New Journal of Physics, 2009, 11(4): 045023‍.

[22] Zhang Y C, Li Z Y, Chen Z Y, et al‍. Continuous-variable QKD over 50 km commercial fiber [J]‍. Quantum Science and Technology, 2019, 4(3): 035006‍.

[23] Liu Y, Chen T Y, Wang L J, et al‍. Experimental measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2013, 111(13): 130502‍.

[24] Rubenok A, Slater J A, Chan P, et al‍. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks [J]‍. Physical Review Letters, 2013, 111(13): 130501‍.

[25] Cao Y, Li Y H, Yang K X, et al‍. Long-distance free-space measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2020, 125(26): 260503‍.

[26] Fan-Yuan G J, Lu F Y, Wang S, et al‍. Robust and adaptable quantum key distribution network without trusted nodes [J]‍. Optica, 2022, 9(7): 812‍.

[27] Wang S, Yin Z Q, He D Y, et al‍. Twin-field quantum key distribution over 830 km fibre [J]‍. Nature Photonics, 2022, 16: 154‒161‍.

[28] Liu Y, Zhang W J, Jiang C, et al‍. Experimental twin-field quantum key distribution over 1000 km fiber distance [J]‍. Physical Review Letters, 2023, 130(21): 210801‍.

[29] Zhou L, Lin J P, Xie Y M, et al‍. Experimental quantum communication overcomes the rate-loss limit without global phase tracking [J]‍. Physical Review Letters, 2023, 130(25): 250801‍.

[30] Zhang X, Gao F, Qin S J, et al‍. Current status and future development of quantum cryptographic protocols [J]‍. Chinese Journal of Engineering Science, 2022, 24(4): 145‍.

[31] 中国科学院量子信息与量子科技创新研究院‍. 中国三项量子行业标准正式执行 [EB/OL]‍. (2023-08-01)[2023-09-28]‍. https://quantumcas‍.ac‍.cn/2023/0828/c24874a610609/page‍.htm‍.
CAS Center for Excellence in Quantum Information and Quantum Physics‍. China´s three quantum industry standards officially implemented [EB/OL]‍. (2023-08-01)[2023-09-28]‍. https://quantumcas‍.ac‍.cn/2023/0828/c24874a610609/page‍.htm‍.

[32] 魏璐, 马钟, 刘倩玉‍. 量子计算模拟平台发展综述 [J]‍. 微电子学与计算机, 2022, 39(11): 1‒10‍.
Wei L, Ma Z, Liu Q Y‍. Overview of quantum computing simulation platforms [J]‍. Microelectronics & Computer, 2022, 39(11): 1‒10‍.

[33] Group B Q‍. Quafu-qcover: Explore combinatorial optimization problems on cloud-based quantum computers [EB/OL]‍. (2023-05-29)[2023-09-28]. https://arxiv‍.org/abs/2305‍.17979‍.pdf‍.

[34] Xinhuanet‍. China´s 176-qubit quantum computing platform goes online [EB/OL]‍. (2023-05-31)‍[2023-09-28]‍. https://english‍.news‍.cn/20230531/0946675301284c1786b4ee27251c89a3/c‍.html‍.

[35] Ryan L R‍. Overview and comparison of gate level quantum software platforms [J]‍. Quantum, 2019, 3: 130‍.

[36] Chen J X, Zhang F, Huang C, et al‍. Classical simulation of intermediate-size quantum circuits [EB/OL]‍. (2018-03-03)[2023-09-28]‍. https://arxiv‍.org/abs/1805‍.01450‍.pdf‍.

[37] Cuomo D, Caleffi M, Cacciapuoti A S‍. Towards a distributed quantum computing ecosystem [J]‍. IET Quantum Communication, 2020, 1(1): 3‒8‍.

[38] Perlin M, Tomesh T, Pearlman B, et al‍. Parallelizing simulations of large quantum circuits [C]‍. New York: The International Conference for High Performance Computing, Networking, Storage, and Analysis, Supercomputin, 2019‍.

[39] Grover L K‍. Quantum telecomputation [EB/OL]‍. (1997-04-07)[2023-09-28]‍. https://arxiv‍.org/abs/quant-ph/9704012‍.pdf‍.

[40] Xiao L G, Qiu D W, Luo L, et al‍. Distributed shor´s algorithm [J]‍. Quantum Information and Computation, 2023, 23(1&2): 27‒44‍.

[41] Liu X, Hu X M, Zhu T X, et al‍. Distributed quantum computing over 7‍.0 km [EB/OL]‍. (2023-07-28)[2023-09-28]‍. https://arxiv‍.org/abs/2307‍.15634‍.pdf‍.

[42] Peng T Y, Harrow A W, Ozols M, et al‍. Simulating large quantum circuits on a small quantum computer [J]‍. Physical Review Letters, 2020, 125(15): 150504‍.

[43] Lowe A, Medvidović M, Hayes A, et al‍. Fast quantum circuit cutting with randomized measurements [J]‍. Quantum, 2023, 7: 934‍.

[44] 崔子嵬, 王维语, 翁文康‍. 量子云计算平台的现状与发展 [J]‍. 信息通信技术与政策, 2020 (7): 43‒48‍.
Cui Z W, Wang W Y, Weng W K‍. The status and development of quantum computation cloud platform [J]‍. Information and Communications Technology and Policy, 2020 (7): 43‒48‍.

[45] Bouwmeester D, Pan J W, Mattle K, et al‍. Experimental quantum teleportation [J]‍. Nature, 1997, 390(6660): 575‒579‍.

[46] Zhao Z, Chen Y A, Zhang A N, et al‍. Experimental demonstration of five-photon entanglement and open-destination teleportation [J]‍. Nature, 2004, 430: 54‒58‍.

[47] Zhang Q, Goebel A, Wagenknecht C, et al‍. Experimental quantum teleportation of a two-qubit composite system [J]‍. Nature Physics, 2006, 2: 678‒682‍.

[48] Wang X L, Cai X D, Su Z E, et al‍. Quantum teleportation of multiple degrees of freedom of a single photon [J]‍. Nature, 2015, 518: 516‒519‍.

[49] Ren J G, Xu P, Yong H L, et al‍. Ground-to-satellite quantum teleportation [J]‍. Nature, 2017, 549: 70‒73‍.

[50] Luo Y H, Zhong H S, Erhard M, et al‍. Quantum teleportation in high dimensions [J]‍. Physical Review Letters, 2019, 123(7): 070505‍.

[51] Liu S S, Lou Y B, Jing J T‍. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation [J]‍. Nature Communications, 2020, 11: 3875‍.

[52] Langenfeld S, Welte S, Hartung L, et al‍. Quantum teleportation between remote qubit memories with only a single photon as a resource [J]‍. Physical Review Letters, 2021, 126(13): 130502‍.

[53] Sherson J F, Krauter H, Olsson R K, et al‍. Quantum teleportation between light and matter [J]‍. Nature, 2006, 443: 557‒560‍.

[54] Bao X H, Xu X F, Li C M, et al‍. Quantum teleportation between remote atomic-ensemble quantum memories [J]‍. Proceedings of the National Academy of Sciences, 2012, 109(50): 20347‒20351‍.

[55] Nölleke C, Neuzner A, Reiserer A, et al‍. Efficient teleportation between remote single-atom quantum memories [J]‍. Physical Review Letters, 2013, 110(14): 140403‍.

[56] Pfaff W, Hensen B J, Bernien H, et al‍. Unconditional quantum teleportation between distant solid-state quantum bits [J]‍. Science, 2014, 345(6196): 532‒535‍.

[57] Hermans S L N, Pompili M, Beukers H K C, et al‍. Qubit teleportation between non-neighbouring nodes in a quantum network [J]‍. Nature, 2022, 605(7911): 663‒668‍.

[58] Briegel H J, Dür W, Cirac J I, et al‍. Quantum repeaters: The role of imperfect local operations in quantum communication [J]‍. Physical Review Letters, 1998, 81(26): 5932‒5935‍.

[59] Duan L M, Lukin M D, Cirac J I, et al‍. Long-distance quantum communication with atomic ensembles and linear optics [J]‍. Nature, 2001, 414(6862): 413‒418‍.

[60] Wei S H, Jing B, Zhang X Y, et al‍. Towards real-world quantum networks: A review [J]‍. Laser & Photonics Reviews, 2022, 16(3): 2100219‍.

[61] 魏世海, 张雪莹, 廖金宇, 等‍. 集成固态光量子存储器件研究进展 [J]‍. 信息通信技术与政策, 2023, 49(7): 44‒52‍.
Wei S H, Zhang X Y, Liao J Y, et al‍. Progress of integrated solid-state photonic quantum memory [J]‍. Information and Communications Technology and Policy, 2023, 49(7): 44‒52‍.

[62] Klyshko D‍. Coherent photon decay in a nonlinear medium [J]‍. Journal of Experimental and Theoretical Physics Letters, 1967, 6: 23‍.

[63] Zel´dovich B, Klyshko D‍. Field statistics in parametric luminescence [J]‍. Jetp Letters, 1969, 9: 40‍.

[64] Hübel H, Hamel D R, Fedrizzi A, et al‍. Direct generation of photon triplets using cascaded photon-pair sources [J]‍. Nature, 2010, 466: 601‒603‍.

[65] Kwiat P G, Mattle K, Weinfurter H, et al‍. New high-intensity source of polarization-entangled photon pairs [J]‍. Physical Review Letters, 1995, 75(24): 4337‒4341‍.

[66] Zhang C, Huang Y F, Wang Z, et al‍. Experimental greenberger-horne-zeilinger-type six-photon quantum nonlocality [J]‍. Physical Review Letters, 2015, 115(26): 260402‍.

[67] Kim Y H, Kulik S P, Chekhova M V, et al‍. Experimental entanglement concentration and universal Bell-state synthesizer [J]‍. Physical Review A, 2003, 67: 010301‍.

[68] Zheng S B, Guo G C‍. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J]‍. Physical Review Letters, 2000, 85(11): 2392‒2395‍.

[69] Cervera-Lierta A, Krenn M, Aspuru-Guzik A, et al‍. Experimental high-dimensional greenberger-horne-zeilinger entanglement with superconducting transmon qutrits [J]‍. Physical Review Applied, 2022, 17(2): 024062‍.

[70] 高伟超‍. 纠缠光子源的制备及其在量子信息中的应用研究 [D]‍. 北京: 北京邮电大学 (博士学位论文), 2020‍.
Gao W C‍. Preparation of entangled photon source and its application in quantum information [D]‍. Beijing: Beijing University of Posts and Telecommunications (Doctoral dissertation), 2020‍.

[71] Ecker S, Bouchard F, Bulla L, et al‍. Overcoming noise in entanglement distribution [J]‍. Physical Review X, 2019, 9(4): 041042‍.

[72] Jost J D, Home J P, Amini J M, et al‍. Entangled mechanical oscillators [J]‍. Nature, 2009, 459: 683‒685‍.

[73] Kurokawa H, Yamamoto M, Sekiguchi Y, et al‍. Remote entanglement of superconducting qubits via solid-state spin quantum memories [J]‍. Physical Review Applied, 2022, 18(6): 064039‍.

[74] Gaudreau L, Bogan A, Korkusinski M, et al‍. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits [J]‍. Semiconductor Science and Technology, 2017, 32(9): 093001‍.

[75] van Leent T, Bock M, Fertig F, et al‍. Entangling single atoms over 33 km telecom fibre [J]‍. Nature, 2022, 607: 69‒73‍.

[76] Liu S S, Lou Y B, Chen Y X, et al‍. All-optical entanglement swapping [J]‍. Physical Review Letters, 2022, 128(6): 060503‍.

[77] Liu Y H, Yan Z H, Jia X J, et al‍. Deterministically entangling two remote atomic ensembles via light-atom mixed entanglement swapping [J]‍. Scientific Reports, 2016, 6: 25715‍.

[78] Salimian S, Tavassoly M K, Ghasemi M‍. Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement [J]‍. Scientific Reports, 2023, 13: 16342‍.

[79] Shabani A, Kosut R L, Mohseni M, et al‍. Efficient measurement of quantum dynamics via compressive sensing [J]‍. Physical Review Letters, 2011, 106(10): 100401‍.

[80] Zhu H J, Hayashi M‍. Efficient verification of pure quantum states in the adversarial scenario [J]‍. Physical Review Letters, 2019, 123(26): 260504‍.

[81] Bennett C H, Brassard G, Popescu S, et al‍. Purification of noisy entanglement and faithful teleportation via noisy channels [J]‍. Physical Review Letters, 1996, 76(5): 722‒725‍.

[82] Duan L M, Giedke G, Cirac J I, et al‍. Entanglement purification of Gaussian continuous variable quantum states [J]‍. Physical Review Letters, 2000, 84(17): 4002‒4005‍.

[83] Wilde M M, Krovi H, Brun T A‍. Convolutional entanglement distillation [C]‍. Austin: 2010 IEEE International Symposium on Information Theory, 2010‍.

[84] Kalb N, Reiserer A A, Humphreys P C, et al‍. Entanglement distillation between solid-state quantum network nodes [J]‍. Science, 2017, 356(6341): 928‒932‍.

[85] Nweke N I, Toliver P, Runser R J, et al‍. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels [J]‍. Applied Physics Letters, 2005, 87(17): 174103‍.

[86] Qi B, Zhu W, Qian L, et al‍. Feasibility of quantum key distribution through a dense wavelength division multiplexing network [J]‍. New Journal of Physics, 2010, 12(10): 103042‍.

[87] Bahrami A, Lord A, Spiller T‍. Quantum key distribution integration with optical dense wavelength division multiplexing: A review [J]‍. IET Quantum Communication, 2020, 1(1): 9‒15‍.

[88] 王宇帅, 李云霞, 石磊, 等‍. 量子密钥通信网信道复用方案研究 [J]‍. 通信技术, 2015, 48(1): 82‒85‍.
Wang Y S, Li Y X, Shi L, et al‍. Channel multiplexing scheme in optical networking for quantum key distribution [J]‍. Communications Technology, 2015, 48(1): 82‒85‍.

[89] Xavier G B, Lima G‍. Quantum information processing with space-division multiplexing optical fibres [J]‍. Communications Physics, 2020, 3: 9‍.

[90] Birks T A, Gris-Sánchez I, Yerolatsitis S, et al‍. The photonic lantern [J]‍. Advances in Optics and Photonics, 2015, 7(2): 107‒167‍.

[91] Yerolatsitis S, Gris-Sánchez I, Birks T A‍. Adiabatically-tapered fiber mode multiplexers [J]‍. Optics Express, 2014, 22(1): 608‒617‍.

[92] Zeng X L, Li Y, Feng L P, et al‍. All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller [J]‍. Optics Letters, 2018, 43(19): 4779‒4782‍.

[93] Cañas G, Vera N, Cariñe J, et al‍. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers [J]‍. Physical Review A, 2017, 96(2): 022317‍.

[94] Cozzolino D, Bacco D, Da Lio B, et al‍. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication [J]‍. Physical Review Applied, 2019, 11(6): 064058‍.

[95] Hu X M, Xing W B, Liu B H, et al‍. Efficient distribution of high-dimensional entanglement through 11 km fiber [J]‍. Optica, 2020, 7(7): 738‒743‍.

[96] Cirac J I, Zoller P, Kimble H J, et al‍. Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J]‍. Physical Review Letters, 1997, 78(16): 3221‒3224‍.

[97] Dou J P, Yang A L, Du M Y, et al‍. Direct observation of broadband nonclassical states in a room-temperature light-matter interface [J]‍. NPJ Quantum Information, 2018, 4: 31‍.

[98] Yang P F, Xia X W, He H, et al‍. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity [J]‍. Physical Review Letters, 2019, 123(23): 233604‍.

[99] Burek M J, Meuwly C, Evans R E, et al‍. Fiber-coupled diamond quantum nanophotonic interface [J]‍. Physical Review Applied, 2017, 8(2): 024026‍.

[100] Yang S J, Wang X J, Bao X H, et al‍. An efficient quantum light-matter interface with sub-second lifetime [J]‍. Nature Photonics, 2016, 10(6): 381‒384‍.

[101] Stute A, Casabone B, Brandstätter B, et al‍. Toward an ion-photon quantum interface in an optical cavity [J]‍. Applied Physics B, 2012, 107(4): 1145‒1157‍.

[102] Vahala K‍. Optical microcavities [J]‍. Nature, 2003, 424: 839‒846‍.

[103] Yao W, Liu R B, Sham L J‍. Theory of control of the dynamics of the interface between stationary and flying qubits [J]‍. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S318‒S325‍.

[104] Barzanjeh S, Abdi M, Milburn G J, et al‍. Reversible optical-to-microwave quantum interface [J]‍. Physical Review Letters, 2012, 109(13): 130503‍.

[105] Vedovato F, Agnesi C, Tomasin M, et al‍. Postselection-loophole-free Bell violation with genuine time-bin entanglement [J]‍. Physical Review Letters, 2018, 121(19): 190401‍.

[106] Kupchak C, Erskine J, England D, et al‍. Terahertz-bandwidth switching of heralded single photons [J]‍. Optics Letters, 2019, 44(6): 1427‒1430‍.

[107] Oza N N, Huang Y P, Kumar P‍. Ultrafast switching of photonic entanglement [C]‍. California: IEEE Photonics Conference, 2012‍.

[108] Kupchak C, Bustard P J, Heshami K, et al‍. Time-bin-to-polarization conversion of ultrafast photonic qubits [J]‍. Physical Review A, 2017, 96(5): 053812‍.

[109] Pu Y F, Wu Y K, Jiang N, et al‍. Experimental entanglement of 25 individually accessible atomic quantum interfaces [J]‍. Science Advances, 2018, 4(4): eaar3931‍.

[110] Choi K S, Goban A, Papp S B, et al‍. Entanglement of spin waves among four quantum memories [J]‍. Nature, 2010, 468(7322): 412‒416‍.

[111] Illiano J, Caleffi M, Manzalini A, et al‍. Quantum Internet protocol stack: A comprehensive survey [J]‍. Computer Networks, 2022, 213: 109092‍.

[112] Van Meter R, Ladd T D, Munro W J, et al‍. System design for a long-line quantum repeater [J]‍. IEEE/ACM Transactions on Networking, 2009, 17(3): 1002‒1013‍.

[113] Van Meter R, Touch J‍. Designing quantum repeater networks [J]‍. IEEE Communications Magazine, 2013, 51(8): 64‒71‍.

[114] Dahlberg A, Skrzypczyk M, Coopmans T, et al‍. A link layer protocol for quantum networks [C]‍. Beijing: The ACM Special Interest Group on Data Communication, 2019‍.

[115] Kozlowski W, Wehner S‍. Towards large-scale quantum networks [C]‍. Dublin: The Sixth Annual ACM International Conference on Nanoscale Computing and Communication, 2019‍.

[116] Li Z H, Xue K P, Li J, et al‍. Building a large-scale and wide-area quantum Internet based on an OSI-alike model [J]‍. China Communications, 2021, 18(10): 1‒14‍.

[117] Pirker A, Dür W‍. A quantum network stack and protocols for reliable entanglement-based networks [J]‍. New Journal of Physics, 2019, 21(3): 033003‍.

[118] Illiano J, Caleffi M, Manzalini A, et al‍. Quantum Internet protocol stack: A comprehensive survey [J]‍. Computer Networks, 2022, 213: 109092‍.

[119] Van Meter R, Satoh T, Ladd T D, et al‍. Path selection for quantum repeater networks [J]‍. Networking Science, 2013, 3(1): 82‒95‍.

[120] Li J, Wang M J, Xue K P, et al‍. Fidelity-guaranteed entanglement routing in quantum networks [J]‍. IEEE Transactions on Communications, 2022, 70(10): 6748‒6763‍.

[121] Caleffi M‍. Optimal routing for quantum networks [J]‍. IEEE Access, 2017, 5: 22299‒22312‍.

[122] Das S, Khatri S, Dowling J P‍. Robust quantum network architectures and topologies for entanglement distribution [J]‍. Physical Review A, 2018, 97: 012335‍.

[123] Shirichian M, Tofighi S‍. Protocol for routing entanglement in the quantum ring network [C]‍. Tehran: 2018 9th International Symposium on Telecommunications (IST), 2018‍.

[124] Pant M, Krovi H, Towsley D, et al‍. Routing entanglement in the quantum Internet [J]‍. NPJ Quantum Information, 2019, 5: 25‍.

[125] Li C H, Li T Y, Liu Y X, et al‍. Effective routing design for remote entanglement generation on quantum networks [J]‍. NPJ Quantum Information, 2021, 7(1): 10‍.

[126] Cai X F, Yu X T, Shi X X, et al‍. Ad hoc quantum network routing protocol based on quantum teleportation [C]‍. Nanjing: The International Symposium on Antennas & Propagation, 2013‍.

[127] Yu X T, Zhang Z C, Xu J‍. Distributed wireless quantum communication networks with partially entangled pairs [J]‍. Chinese Physics B, 2014, 23(1): 010303‍.

[128] Zhang L, Liu Q‍. Optimisation of the routing protocol for quantum wireless Ad Hoc network [J]‍. IET Quantum Communication, 2022, 3(1): 5‒12‍.

[129] Elliott C, Colvin A, Pearson D, et al‍. Current status of the DARPA quantum network [C]‍. Orlando: Quantum Information and Computation III, 2005‍.

[130] Dianati M, Alléaume R, Gagnaire M, et al‍. Architecture and protocols of the future European quantum key distribution network [J]‍. Security and Communication Networks, 2008, 1(1): 57‒74‍.

[131] Han Q, Yu L Y, Zheng W C, et al‍. A novel QKD network routing algorithm based on optical-path-switching [J]‍. Journal of Information Hiding and Multimedia Signal Processing, 2014, 5: 13‒19‍.

[132] Zou X Y, Yu X S, Zhao Y L, et al‍. Collaborative routing in partially-trusted relay based quantum key distribution optical networks [C]‍. California: Optical Fiber Communication Conference (OFC), 2020‍.

[133] Pirker A, Wallnöfer J, Dür W‍. Modular architectures for quantum networks [J]‍. New Journal of Physics, 2018, 20(5): 053054‍.

[134] Kozlowski W, Dahlberg A, Wehner S‍. Designing a quantum network protocol [C]‍. Barcelona: The 16th International Conference on Emerging Networking EXperiments and Technologies, 2020.

[135] Hussein S A, Abdullah A A‍. A review of various quantum routing protocols designed for quantum network environment [C]‍. Malang: 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 2022‍.

[136] 张雪莹, 袁晨智, 魏世海, 等‍. 稀土掺杂固态量子存储研究进展 [J]‍. 低温物理学报, 2019, 41(5): 315‒334‍.
Zhang X Y, Yuan C Z, Wei S H, et al‍. Rare earth ion doped solid state quantum memory [J]‍. Low Temperature Physical Letters, 2019, 41(5): 315‒334‍.

[137] Wang Y F, Li J F, Zhang S C, et al‍. Efficient quantum memory for single-photon polarization qubits [J]‍. Nature Photonics, 2019, 13(5): 346‒351‍.

[138] Main D, Hird T M, Gao S, et al‍. Room temperature atomic frequency comb storage for light [J]‍. Optics Letters, 2021, 46(12): 2960‒2963‍.

[139] Nakazato T, Reyes R, Imaike N, et al‍. Quantum error correction of spin quantum memories in diamond under a zero magnetic field [J]‍. Communications Physics, 2022, 5: 102‍.

[140] Ma Y, Ma Y Z, Zhou Z Q, et al‍. One-hour coherent optical storage in an atomic frequency comb memory [J]‍. Nature Communications, 2021, 12(1): 2381‍.

[141] Wei S H, Jing B, Zhang X Y, et al‍. Storage of 1650 modes of single photons at telecom wavelength [EB/OL]‍. (2023-02-08)[2023-09-28]. https://arxiv‍.org/abs/2209‍.00802.

[142] Specht H P, Nölleke C, Reiserer A, et al‍. A single-atom quantum memory [J]‍. Nature, 2011, 473(7346): 190‒193‍.

[143] Wang P F, Luan C Y, Qiao M, et al‍. Single ion qubit with estimated coherence time exceeding one hour [J]‍. Nature Communications, 2021, 12: 233‍.

[144] Heinze G, Hubrich C, Halfmann T‍. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute [J]‍. Physical Review Letters, 2013, 111(3): 033601‍.

[145] Afzelius M, Simon C, de Riedmatten H, et al‍. Multimode quantum memory based on atomic frequency combs [J]‍. Physical Review A, 2009, 79(5): 052329‍.

[146] Damon V, Bonarota M, Louchet-Chauvet A, et al‍. Revival of silenced echo and quantum memory for light [J]‍. New Journal of Physics, 2011, 13(9): 093031‍.

[147] Azuma K, Tamaki K, Lo H K‍. All-photonic quantum repeaters [J]‍. Nature Communications, 2015, 6: 6787‍.

[148] Li Z D, Zhang R, Yin X F, et al‍. Experimental quantum repeater without quantum memory [J]‍. Nature Photonics, 2019, 13: 644‒648‍.

[149] Sangouard N, Simon C, de Riedmatten H, et al‍. Quantum repeaters based on atomic ensembles and linear optics [J]‍. Reviews of Modern Physics, 2011, 83(1): 33‒80‍.

[150] Liu X, Hu J, Li Z F, et al‍. Heralded entanglement distribution between two absorptive quantum memories [J]‍. Nature, 2021, 594: 41‒45‍.

[151] Muralidharan S, Li L S, Kim J, et al‍. Optimal architectures for long distance quantum communication [J]‍. Scientific Reports, 2016, 6: 20463‍.

[152] Krastanov S, Raniwala H, Holzgrafe J, et al‍. Optically heralded entanglement of superconducting systems in quantum networks [J]‍. Physical Review Letters, 2021, 127(4): 040503‍.

[153] Li T, Yang G J, Deng F G‍. Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities [J]‍. Physical Review A, 2016, 93: 012302‍.

[154] Roffe J‍. Quantum error correction: An introductory guide [J]‍. Contemporary Physics, 2019, 60(3): 226‒245‍.

[155] Munro W J, Stephens A M, Devitt S J, et al‍. Quantum communication without the necessity of quantum memories [J]‍. Nature Photonics, 2012, 6: 777‒781‍.

[156] Muralidharan S, Kim J, Lütkenhaus N, et al‍. Ultrafast and fault-tolerant quantum communication across long distances [J]‍. Physical Review Letters, 2014, 112(25): 250501‍.

Related Research