Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 2 doi: 10.15302/J-SSCAE-2023.06.017

Current Status and Outlook of Offshore CO2 Pipeline Transportation Technologies

1. College of Materials, Xiamen University, Xiamen 361005, Fujian, China;

2. Center for Marine Materials Corrosion and Protection, Xiamen University, Xiamen 361005, Fujian, China;

3. CNOOC Research Institute Co., Ltd., Beijing 100028, China;

4. National Key Laboratory of Marine Natural Gas Hydrates, Beijing 100028, China;

5. Huairou Laboratory, Beijing 101499, China;

6. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;

7. State Key Laboratory of Marine Environmental Science, Xiamen 361102, Fujian, China;

8. Sinopec Petroleum Engineering Corporation, Dongying 257026, Shandong, China;

9. Sinopec Key Laboratory for Carbon Capture, Utilization and Sequestration, Dongying 257026, Shandong, China

Funding project:国家自然科学基金项(52271075) Received: 2023-10-06 Revised: 2023-10-22 Available online: 2024-04-16

Next Previous

Abstract

Pipeline transportation is an economical and effective way for transferring carbon dioxide (CO2) to the sea, serving as a key procedure for an offshore carbon capture, utilization and sequestration (CCUS) project, as well as a core technology for the large-scale construction of CCUS projects in China. This study clarifies the advantages of China in the construction of offshore CCUS projects, typical offshore carbon pipeline scenarios, and typical offshore CO2 transportation modes. It also reviews the technologies and projects in China and abroad regarding offshore CO2 transportation via pipelines. The current technologies relevant to offshore CO2 pipeline transportation are systematically reviewed. Specifically, the process technologies include CO2 fluid state analysis and flow assurance; corrosion evaluation, monitoring, and early warning; real-time monitoring of pipe leakage; and release of high-pressure CO2 and its environmental impacts. The material technologies include the fracture of pipeline materials and its mitigation, high corrosion-resistant and sealing materials, key corrosion-control techniques for the long-term operation of pipelines, and corrosion risk evaluation of CO2 injection wells. Further efforts should focus on the following aspects: material selection systems for the complex conditions during offshore CO2 pipeline transportation, full-chain intelligent management and digital twin technologies for CO2 pipelines, key technologies regarding the whole life-time operation of subsea CO2 pipelines, and evaluation and assurance techniques for the transferred transportation pipelines. Furthermore, the following suggestions are proposed to promote the high-quality development of the offshore CO2 pipeline transportation system in China: (1) promoting the planning of offshore CO2 pipeline networks, (2) expanding interdisciplinary innovations, (3) establishing standards systems that applicable to both onshore and offshore scenarios, and (4) encouraging the participation of diversified technology service enterprises.

Figures

图1

图2

图3

References

[ 1 ] 张贤, 李阳, 马乔, 等‍. 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学, 2021, 23(6): 70‒80.
Zhang X, Li Y, Ma Q, et al. Development of carbon capture, utilization and storage technology in China [J]. Strategic Study of CAE, 2021, 23(6): 70‒80.

[ 2 ] 李清平, 周守为‍. 构建自立自强的海洋能源资源绿色开发技术体系 [J]. 人民论坛·学术前沿, 2022, 22(17): 12‒28.
Li Q P, Zhou S W. Building a self-reliant technological system for green development of offshore energy & resource [J]. Frontiers, 2022, 22(17): 12‒28.

[ 3 ] Zhou D, Li P C, Liang X, et al. A long-term strategic plan of offshore CO2 transport and storage in Northern South China Sea for a low-carbon development in Guangdong Province, China [J]. International Journal of Greenhouse Gas Control, 2018, 70: 76‒87.

[ 4 ] Meckel T A, Hovorka S D, Trevino R, et al. Toward an international program for offshore storage of CO2: International initiative for CCS sub-sea (iCCSc) [J]. Energy Procedia, 2014, 63: 5015‒5020.

[ 5 ] 我国海域二氧化碳地质封存资源家底基本摸清 [EB/OL]. (2023-01-12)‍[2023-09-15]. https://www.cgs.gov.cn/xwl/ddyw/202301/t20230112_722925.html.
The carbon dioxide geological storage resources in China´s sea area were basically determined [EB/OL]. (2023-01-12)[2023-09-15]. https://www.cgs.gov.cn/xwl/ddyw/202301/t20230112_722925.html.

[ 6 ] Li J H. Accelerate the offshore CCUS to carbon-neutral China [J/OL]. Fundamental Research, [2022-11-09]. https://doi.org/10.1016/j.fmre. 2022.10.015.

[ 7 ] 李姜辉, 李鹏春, 李彦尊, 等‍. 离岸碳捕集利用与封存技术体系研究 [J]. 中国工程科学, 2023, 25(2): 173‒186.
Li J H, Li P C, Li Y Z, et al. Technology system of offshore carbon capture, utilization, and storage [J]. Strategic Study of CAE, 2023, 25(2): 173‒186.

[ 8 ] Sweatman R E, Crookshank S, Edman S. Outlook and technologies for offshore CO2 EOR/CCS projects [C]. Houston: Offshore Technology Conference, 2011.

[ 9 ] 孔艳杰, 隋舵‍. 海峡两岸合作开发东海、南海油气资源探析 [J]. 学术交流, 2008 (11): 89‒92.
Kong Y J, Sui D. Exploration of cross strait cooperation in developing oil and gas resources in the East China Sea [J]. Academic Exchange, 2008 (11): 89‒92.

[10] Lyu G Z, Li Q, Wang S J, et al. Key techniques of reservoir engineering and injection-production process for CO2 flooding in China´s SINOPEC Shengli Oilfield [J]. Journal of CO2 Utilization, 2015, 11: 31‒40.

[11] Hornafius K Y, Hornafius J S. Carbon negative oil: A pathway for CO2 emission reduction goals [J]. International Journal of Greenhouse Gas Control, 2015, 37: 492‒503.

[12] Gondal I A, Masood S A. Synergies in offshore wind and oil industry for carbon capture and utilization [J]. Greenhouse Gases: Science and Technology, 2019, 9(5): 856‒871.

[13] Roussanaly S, Brunsvold A L, Hognes E S. Benchmarking of CO2 transport technologies: Part II—Offshore pipeline and shipping to an offshore site [J]. International Journal of Greenhouse Gas Control, 2014, 28: 283‒299.

[14] Oosterkamp A, Ramsen J. State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines [EB/OL]. [2023-09-15]. https://www.researchgate.net/profile/Antonie-Oosterkamp/publication/228688545_State-of-the-Art_Overview_of_CO_2_Pipeline_Transport_with_Relevance_to_Offshore_Pipelines/links/0deec 5270ceae8bb47000000/State-of-the-Art-Overview-of-CO-2-Pipeline-Transport-with-Relevance-to-Offshore-Pipelines.pdf.

[15] Watt J. Carbon dioxide transport infrastructure—Key learning and critical issues [J]. Journal of Pipeline Engineering, 2010, 9(4): 213‒222.

[16] 黄维和, 李玉星, 陈朋超‍. 碳中和愿景下中国二氧化碳管道发展战略 [J]. 天然气工业, 2023, 43(7): 1‒9.
Huang W H, Li Y X, Chen P C. China´s CO2 pipeline development strategy under the strategy of carbon neutrality [J]. Natural Gas Industry, 2023, 43(7): 1‒9.

[17] Svensson R, Odenberger M, Johnsson F, et al. Transportation systems for CO2—Application to carbon capture and storage [J]. Energy Conversion and Management, 2004, 45(15‒16): 2343‒2353.

[18] McKaskle R W, Beitler C, Dombrowski K, et al. The engineer´s guide to CO2 transportation options [EB/OL]. [2023-09-15]. https://api.semanticscholar.org/CorpusID: 254034977.

[19] 丘惠娴‍. 海上二氧化碳长输管道成本分析 [J]. 化工设计通讯, 2023, 49(4): 70‒73.
Qiu H X. Cost analysis of offshore carbon dioxide pipeline [J]. Chemical Engineering Design Communications, 2023, 49(4): 70‒73.

[20] 张贤, 杨晓亮, 鲁玺, 等‍. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023) [R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
Zhang X, Yang X L, Lu X, et al. Annual review on carbon capture, utilization and sequstration in China (2023) [R]. Beijing: Administrative Centre for China´s Agenda 21, Global Carbon Capture and Storage Institute, Tsinghua University, 2023.

[21] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage [J]. Applied Energy, 2017, 208: 1389‒1419.

[22] Ringrose P, Sæther Ø, Equinor A. CO2 injection operations: Insights from Sleipner and Snøhvit [J]. Aberdeen: SPE CCUS Conference, 2020.

[23] Iglesias R S, Ketzer J M, Melo C L, et al. Carbon capture and geological storage in Brazil: An overview [J]. Greenhouse Gases: Science and Technology, 2015, 5(2): 119‒130.

[24] 陈荣旗, 雷震名‍. 中国海底管道工程技术发展与展望 [J]. 油气储运, 2022, 41(6): 667‒672.
Chen R Q, Lei Z M. Progress and outlook of submarine pipeline engineering technologies in China [J]. Oil & Gas Storage and Transportation, 2022, 41(6): 667‒672.

[25] 黄钰, 包佳‍. 深水海底管道铺设发展综述 [J]. 海洋工程装备与技术, 2017, 4(5): 281‒286.
Huang Y, Bao J. Development in deepwater pipe laying [J]. Ocean Engineering Equipment and Technology, 2017, 4(5): 281‒286.

[26] 王海涛, 池强, 李鹤林, 等‍. 海底油气输送管道材料开发和应用现状 [J]. 焊管, 2014, 37(8): 25‒29.
Wang H T, Chi Q, Li H L, et al. Development and application status of submarine pipeline materials for oil and gas transportation [J]. Welded Pipe and Tube, 2014, 37(8): 25‒29.

[27] 金晓剑, 陈荣旗, 朱晓环‍. 南海深水陆坡区油气集输的重大挑战与技术创新——荔湾3-1深水气田及周边气田水下及水上集输工程关键技术 [J]. 中国海上油气, 2018, 30(3): 157‒163.
Jin X J, Chen R Q, Zhu X H. Major challenges and technical innovations of oil & gas gathering and transporting for the deep water continental slope in the South China Sea: Key technologies for subsea and overwater gathering and transporting project of the LW 3-1 deep water gas field & its surroundings [J]. China Offshore Oil and Gas, 2018, 30(3): 157‒163.

[28] 魏斌, 李鹤林, 李发根‍. 海底油气输送用双金属复合管研发现状与展望 [J]. 油气储运, 2016, 35(4): 343‒355.
Wei B, Li H L, Li F G. Research status and prospects of bimetallic composite pipes for submarine oil and gas transmission [J]. Oil & Gas Storage and Transportation, 2016, 35(4): 343‒355.

[29] 中船工业经研中心‍. 我国首条不锈钢复合双层海管于南海完成铺设 [J]. 广东造船, 2017, 36 (3): 92.
China Shipbuilding Industry Economic Research Center. The first stainless steel composite double layer submarine pipeline in China has been laid in the South China Sea [J]. Guangdong Shipbuilding, 2017, 36(3): 92.

[30] 陈晓东, 孙锟, 张西伟, 等‍. 深水柔性管垂直铺设系统技术现状及发展趋势 [J]. 海洋工程装备与技术, 2023, 10(2): 22‒29.
Chen X D, Sun K, Zhang X W, et al. Technical status and developing trend of vertical lay system for flexible pipe laying [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 22‒29.

[31] 王红红, 刘国恒‍. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157‒160.
Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil and Gas, 2017, 29(5): 157‒160.

[32] Ho M, El-Borgi S, Patil D, et al. Inspection and monitoring systems subsea pipelines: A review paper [J]. Structural Health Monitoring, 2020, 19(2): 606‒645.

[33] 吴希明, 李江丰, 严谨, 等‍. 海底油气管道泄漏检测与定位技术研究进展 [J]. 石油工程建设, 2022, 48(3): 1‒7.
Wu X M, Li J F, Yan J, et al. Research progress on leakage detection and location technology of submarine oil and gas pipelines [J]. Petroleum Engineering Construction, 2022, 48(3): 1‒7.

[34] 高峰, 朱加雷‍. 海底油气管道维修工艺研究现状 [J]. 北京石油化工学院学报, 2012, 20(3): 57‒59.
Gao F, Zhu J L. A survey of the research for the submarine oil and gas pipeline maintenance [J]. Journal of Beijing Institute of Petro-Chemical Technology, 2012, 20(3): 57‒59.

[35] 任晓晶‍. 海底油气管道维修方式综述 [J]. 化学工程与装备, 2019, 6(2): 117‒119.
Ren X J. Review on the maintenance methods for submarine oil and gas pipelines [J]. Chemical Engineering & Equipment, 2019, 6(2): 117‒119.

[36] 刘楚, 王佐强, 韩长安‍. 海底管道事故类型及维修方法综述 [J]. 中国石油和化工标准与质量, 2012, 33(15): 254‒255.
Liu C, Wang Z Q, Han C A. Review on the types of submarine pipeline accidents and maintenance methods [J]. China Petroleum and Chemical Standard and Quality, 2012, 33(15): 254‒255.

[37] 陈海龙, 孙政策, 凌爱军, 等‍. 我国在役海底管道发证现状研究 [J]. 石油工程建设, 2020, 46(Z1): 273‒277.
Chen H L, Sun Z C, Ling A J, et al. Current status of certifications for in-service submarine pipelines in China [J]. Petroleum Engineering Construction, 2020, 46(Z1): 273‒277.

[38] 郭庆丰‍. 海底输气管道改输原油的校核 [J]. 压力容器, 2017, 34(9): 68‒72.
Guo Q F. Checking of submarine gas pipeline for transportation switchover crude oil [J]. Pressure Vessel Technology, 2017, 34(9): 68‒72.

[39] 孙启冀‍. 海底输水管道转输油气混合介质可行性研究 [J]. 石油机械, 2013, 41(11): 70‒73.
Sun Q J. Research on the feasibility of using subsea conduit to pump over oil-gas mixed medium [J]. China Petroleum Machinery, 2013, 41(11): 70‒73.

[40] 钱东良, 李长俊, 廖柯熹, 等‍. 水改气海底管道输送高压天然气可行性研究 [J]. 中国安全生产科学技术, 2014 (10): 173‒178.
Qian D L, Li C J, Liao K X, et al. Study on feasibility of high pressure natural gas transported by water subsea pipeline [J]. Journal of Safety Science and Technology, 2014 (10): 173‒178.

[41] Wang Z M, Song G L. An analytical model for the corrosion risk of water alternating gas injection wells in CO2 enhanced oil recovery [J]. Advanced Theory and Simulations, 2018, 1(7): 1800041.

[42] Chandel M K, Pratson L F, Williams E. Potential economies of scale in CO2 transport through use of a trunk pipeline [J]. Energy Conversion & Management, 2010, 51(12): 2825‒2834.

[43] 中华人民共和国工业和信息化部‍. 二氧化碳输送管道工程设计标准 (SH/T 3202—2018). 北京: 中华人民共和国工业和信息化部, 2018.
Ministry of Industry and Information Technology of the People´s Republic of China. Specifications for engineering of carbon dioxide pipeline transportation (SH/T 3202-2018). Beijing: Ministry of Industry and Information Technology of the People´s Republic of China, 2018.

[44] 周蒂, 张云帆, Haszeldine S‍. 二氧化碳离岸运输与封存的工程要求: 国际经验简介 [EB/OL]. (2014-05-15)[2023-09-15]. https://www.waitang.com/report/20300308.html.
Zhou D, Zhang Y F, Haszeldine S. Engineering requirements for offshore transport and storage of carbon dioxide: introduction to international experience [EB/OL]. (2014-05-15)[2023-09-15]. https://www.waitang.com/report/20300308.html.

[45] 张宗檩, 吕广忠, 王杰‍. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11(6): 812‒822.
Zhang Z L, Lyu G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Reservoir Evaluation and Development, 2021, 11(6): 812‒822.

[46] Porter R T J, Fairweather M, Pourkashanian M, et al. The range and level of impurities in CO2 streams from different carbon capture sources [J]. International Journal of Greenhouse Gas Control, 2015, 36: 161‒174.

[47] Race J M, Wetenhall B, Seevam P N, et al. Towards a CO2 pipeline specification: Defining tolerance limits for impurities [J]. Journal of Pipeline Engineering, 2012, 11: 173‒190.

[48] Peletiri S P, Mujtaba I M, Rahmanian N. Process simulation of impurity impacts on CO2 fluids flowing in pipelines [J]. Journal of cleaner production, 2019, 240: 118145.

[49] Wang J S, Ryan D, Anthony E J, et al. Effects of impurities on CO2 transport, injection and storage [J]. Energy Procedia, 2011, 4: 3071‒3078.

[50] Sachde D, McKaskle R, Lundeen J, et al. Review of technical challenges, risks, path forward, and economics of offshore CO2 transportation and infrastructure [C]. Houston: Offshore Technology Conference, 2019.

[51] 唐翠萍, 赵翔湧, 何勇, 等‍. 管道内二氧化碳水合物的形成和流动特性研究 [J]. 天然气化工, 2015, 40(4): 37‒40.
Tang C P, Zhao X Y, He Y, et al. Study on CO2 gas hydrate formation and flow characteristics in pipe [J]. Low-Carbon Chemistry and Chemical Engineering, 2015, 40(4): 37‒40.

[52] 陈兵, 张曙旋, 郭焕焕‍. 含杂质CO2管道输送水合物形成规律研究 [J]. 石油与天然气化工, 2021, 50(2): 42‒47.
Chen B, Zhang S X, Guo H H. Study on the formation law of hydrate in pipeline containing-impurity CO2 [J]. Chemical Engineering of Oil and Gas, 2021, 50(2): 42‒47.

[53] Bilio M, Brown S, Fairweather M, et al. CO2 pipelines material and safety considerations [EB/OL]. (2009-06-15)[2023-09-15]. https://www.icheme.org/media/9558/xxi-paper-061.pdf.

[54] Chapoy A, Burgass R, Tohidi B, et al. Hydrate and phase behavior modeling in CO2 rich pipelines [J]. Journal of Chemical and Engineering Data, 2015, 60(2): 447‒453.

[55] Uilhoorn F E. Evaluating the risk of hydrate formation in CO2 pipelines under transient operation [J]. International Journal of Greenhouse Gas Control, 2013, 14: 177‒182.

[56] Prah B, Yun R. CO2 hydrate slurry transportation in carbon capture and storage [J]. Applied Thermal Engineering, 2018, 128: 653‒661.

[57] Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review [J]. Corrosion Science, 2007, 49(12): 4308‒4338.

[58] Wei L, Pang X L, Gao K W. Effect of flow rate on localized corrosion of X70 steel in supercritical CO2 environments [J]. Corrosion Science, 2018, 136: 339‒351.

[59] Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2-effect of water ingress [J]. Energy Procedia, 2011, 4: 3063‒3070.

[60] 高怡萱, 潘杰, 张建, 等‍. 超临界二氧化碳输送管道内腐蚀研究进展 [J/OL]. 材料导报, [2023-08-07]. http: //kns.cnki.net/kcms/detail/50.1078.TB.20230804.1447.002.html.
Gao Y X, Pan J, Zhang J, et al. Research progress on the corrosion of the inner surface of pipeline used for transporting supercritical carbon dioxide [J/OL]. Materials Reports, [2023-08-07]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230804.1447.002.html.

[61] Liu A Q, Bian C, Wang Z M, et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations [J]. Corrosion Science, 2018, 134: 149‒161.

[62] Knauer S, Quynh-Hoa L, Baessler R, et al. Contact angle and corrosion of a water-CO2 system on X70 and S41500 at 278 K and pressures up to 20 MPa [J]. International Journal of Greenhouse Gas Control, 2019, 89: 33‒39.

[63] Cole I S, Corrigan P, Sim S, et al. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? [J]. International Journal of Greenhouse Gas Control, 2011, 5: 749‒756.

[64] 王伟杰‍. 海底管道内腐蚀监测技术研究现状与发展 [J]. 涂层与防护, 2021, 42(12): 37‒42.
Wang W J. Progress in corrosion monitoring technology in submarine pipeline [J]. Coating and Protection, 2021, 42(12): 37‒42.

[65] 韩立锋, 刘达, 尚确, 等‍. 混合干涉型分布式光纤天然气管道泄漏检测及定位对策分析 [J]. 中国石油和化工标准与质量, 2022, 42(24): 44‒46.
Han L F, Liu D, Shang Q, et al. Hybrid interferometric distributed optical fiber used for leakage detection and localization measures for natural gas pipelines [J]. China Petroleum and Chemical Standard and Quality, 2022, 42(24): 44‒46.

[66] 张伟, 武齐永, 张忠霞, 等‍. 分布式光纤管道监测技术在长距离输水工程中的应用 [J]. 给水排水, 2022, 48(6): 124‒129.
Zhang W, Wu Q Y, Zhang Z X, et al. Application of distributed opticalfiber pipeline monitoring technology in long-distance water conveyance project [J]. Water & Wastewater Engineering, 2022, 48(6): 124‒129.

[67] 李志强. 分布式光纤测温在海底管道泄漏监测中的应用 [J]. 工业生产, 2023, 30(4): 10‒12.
Li Z Q. Application of distributed optical fiber temperature measurement in submarine pipeline leakage monitoring [J]. Petrochemical Industry Technology, 2023, 30(4): 10‒12.

[68] 丁小勇, 宋保强, 吕永强‍. 次声波技术在管道泄漏检测中的应用 [J]. 油气田地面工程, 2015, 34(10): 101‒103.
Ding X Y, Song B Q, Lyu Y Q. Application of infrasound wave technology in pipeline leakage detection [J]. Oil-Gas Field Surface Engineering, 2015, 34(10): 101‒103.

[69] 刘良果, 梅茜迪‍. 次声波的输气管道泄漏监测技术综述 [J]. 石化技术, 2018, 25(12): 203.
Liu L G, Mei X D. Overview of infrasound monitoring technology for gas pipeline leakage [J]. Petrochemical Industry Technology, 2018, 25(12): 203.

[70] Oldenburg C M, Pan L H. Major CO2 blowouts from offshore wells are strongly attenuated in water deeper than 50m [J]. Greenhouse Gases: Science and Technology, 2019, 10(1): 15‒31.

[71] Clausen S, Oosterkamp A, Strøm K L. Depressurization of a 50 km long 24 inches CO2 pipeline [J]. Energy Procedia, 2012, 23: 256‒265.

[72] Guo X L, Yan X Q, Yu J L, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline [J]. Energy, 2017, 118: 1066‒1078.

[73] Koeijer G M, Borch J H, Jakobsen J, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization [J]. Energy Procedia, 2009, 1: 1683‒1689.

[74] Han S H, Kim J, Chang D. An experimental investigation of liquid CO2 release through a capillary tube [J]. Energy Procedia, 2013, 37: 4724‒4730.

[75] Onyebuchi V E, Kolios A, Hanak D P, et al. A systematic review of key challenges of CO2 transport via pipelines [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2563‒2583.

[76] Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)—A review [J]. International Materials Reviews, 2017, 62: 1‒31.

[77] Kling G W, Tuttle M L, Evans W C. The evolution of thermal structure and water chemistry in Lake Nyos [J]. Journal of Volcanology and Geothermal Research, 1989, 39(2‒3): 151‒165.

[78] Little M G, Jackson R B. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers [J]. Environmental Science and Technology, 2010, 44(23): 9225‒9232.

[79] Blackford J, Stahl H, Bull J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage [J]. Nature Climate Change, 2014, 4(11): 1011‒1016.

[80] de Visser E, Hendriks C, Barrio M, et al. Dynamics CO2 quality recommendations [J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 478‒484.

[81] Leperi K T, Snurr R Q, You F Q. Optimization of two-stage pressure/vacuum swing adsorption with variable dehydration level for postcombustion carbon capture [J]. Chemical and Biological Engineering, 2016, 55(12): 3338‒3350.

[82] Vitali M, Corvaro F, Marchetti B, et al. Thermodynamic challenges for CO2 pipelines design: A critical review on the effects of impurities, water content, and low temperature [J]. International Journal of Greenhouse Gas Control, 2022, 114: 103605.

[83] Aursand E, Dumoulin S, Hammer M, et al. Fracture propagation control in CO2 pipelines: Validation of a coupled fluid-structure model [J]. Engineering Structures, 2016, 123: 192‒212.

[84] 陈磊, 闫兴清, 胡延伟, 等‍. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展 [J]. 化工进展, 2022, 41(3): 1241‒1255.
Chen L, Yan X Q, Hu Y W, et al. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241‒1255.

[85] Guo X L, Xu S Q, Chen G J. Fracture criterion and control plan on CO2 pipelines: Theory analysis and full-bore rupture (FBR) experimental study [J]. Journal of Loss Prevention in the Process Industries, 2021, 69(1): 104394.

[86] Ahmad M, Lowesmith B, Koeijer G D, et al. COSHER joint industry project: Large scale pipeline rupture tests to study CO2 release and dispersion [J]. International Journal of Greenhouse Gas Control, 2015, 37: 340‒353.

[87] Cosham A, Eiber R J. Fracture control in carbon dioxide pipelines: The effect of impurities [C]. Calgary: Proceedings of the 7th International Pipeline Conference, 2008.

[88] Mahgerefteh H, Brown S, Denton G. Modelling the impact of stream impurities on ductile fractures in CO2 pipelines [J]. Chemical Engineering Science, 2012, 74: 200‒210.

[89] 刘建武‍. 二氧化碳输送管道工程设计的关键问题 [J]. 油气储运, 2014, 33(4): 369‒373.
Liu J W. Key issues related to engineering design of CO2 transportation pipeline [J]. Oil & Gas Storage and Transportation, 2014, 33(4): 369‒373.

[90] Paul S, Shepherd R, Woollin P. Selection of materials for high pressure CO2 transport [C]. Gateshead: The First International Forum on the transportation of CO2 by Pipeline, 2010.

[91] 蒋秀, 宋晓良, 屈定荣‍. CO2输送相态对管道密封材料性能的影响 [J]. 弹性体, 2019, 29(5): 33‒38.
Jiang X, Song X L, Qu D R. Effect of CO2 phase state on performances of seal materials used for CO2 pipeline [J]. China Elastomerics, 2019, 29(5): 33‒38.

[92] Cole I S, Paterson D A, Corrigan P, et al. State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines [J]. International Journal of Greenhouse Gas Control, 2012, 7: 82‒88.

[93] Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. The Journal of Supercritical Fluids, 2012, 67: 14‒21.

[94] Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. International Journal of Greenhouse Gas Control, 2014, 31: 48‒60.

[95] Sun W, Nešic S, Woollam R C. The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit [J]. Corrosion Science, 2009, 51: 1273‒1276.

[96] Yang Y, Brown B, Nešić S, et al. Mechanical strength and removal of a protective iron carbonate layer formed on mild steel in CO2 corrosion [C]. San Antonio: CORROSION 2010, 2010.

[97] Nesic S, Lee K-L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59(7): 616‒628.

[98] Berntsen T, Seiersten M, Hemmingsen T. Effect of FeCO3 supersaturation and carbide exposure on the CO2 corrosion rate of carbon steel [J]. Corrosion, 2013, 69: 601‒613.

[99] Hua Y, Barker R, Charpentier T, et al. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems [J]. The Journal of Supercritical Fluids, 2015, 98: 183‒193.

[100] 向勇, 原玉, 周佩, 等‍. 碳捕集利用与封存中的金属腐蚀问题研究: 进展与挑战 [J]. 中国工程科学, 2023, 25(3): 197‒208.
Xiang Y, Yuan Y, Zhou P, et al. Metal corrosion in carbon capture, utilization, and storage: Progress and challenges [J]. Strategic Study of CAE, 2023, 25(3): 197‒208.

[101] Choi Y-S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high CO2-water environments [J]. International Journal of Greenhouse Gas Control, 2011, 5: 788‒797.

[102] Carpenter M, Aarnes J, Coleman D, et al. Guideline for the risk management of existing wells at CO2 geological storage sites [R]. Oslo: DNV, 2011.

[103] Feng J N, Wang Z M, Zheng D J, et al. The localized corrosion of mild steel in carbonated cement pore solution under supercritical carbon-dioxide in a simulated geothermal environment [J]. Construction and Building Materials, 2021, 274: 122035.

[104] Bachu S, Bennion D B. Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions [J]. International Journal of Greenhouse Gas Control, 2009, 3(4): 494‒501.

[105] Winograe I J, Robertson F N. Deep oxygenated ground water: Anomaly or common occurrence? [J]. Science, 1982, 216(4551): 1227‒1230.

[106] Bo Y, Liu C L, Jiao P C, et al. Hydrochemical characteristics and controlling factors for waters´ chemical composition in the Tarim Basin, Western China [J]. Geochemistry, 2013, 73(3): 343‒356.

[107] Miao X X, Zhang L W, Wang Y, et al. Characterisation of wellbore cement microstructure alteration under geologic carbon storage using X-ray computed micro-tomography: A framework for fast CT image registration and carbonate shell morphology quantification [J]. Cement and Concrete Composites, 2020, 108(10): 103524.

[108] Kutchko B G, Strazisar B R, Dzombak D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions [J]. Environmental Science & Technology, 2007, 41(13): 4787‒4792.

[109] Carey J W, Wigand M, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA [J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 75‒85.

[110] Gale J, Davison J. Transmission of CO2—Safety and economic considerations [J]. Energy Conversion & Management, 2004, 29 (9‒10): 1319‒1328.

Related Research