Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2021, Volume 22, Issue 4 doi: 10.1631/FITEE.2000451

Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array

电子科技大学通信抗干扰技术国家级重点实验室,中国成都市,611731

Received: 2020-09-02 Accepted: 2021-04-15 Available online: 2021-04-15

Next Previous

Abstract

An can be deployed in high-throughput communication systems to increase the transmission distance. However, when the signal bandwidth is large, the antenna array response changes with the frequency, causing . In this paper, we investigate the effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme. Specifically, we first view analog beamforming and the physical channel as a spatial equivalent channel. The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading. To eliminate the deep fading points in the spatial equivalent channel, an advanced analog beamforming method is proposed based on the (ZC) sequence. Then, the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver. Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the .

Related Research