Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2013, Volume 15, Issue 2

Recent anode advances in solid oxide fuel cells with carbon-based fuels

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

2. Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190,China;

3. Lab of Renewable Energy and Energy Safety, Institute of Chemical Defense, Beijing 102205, China

Funding project:国家重点基础研究发展计划“973计划”资助项目(2012CB215402);国家自然科学基金项目(51172275);中国科学院物理所人才启动项目(Y1k5018E11) Received: 2012-11-05 Available online: 2013-01-28 10:49:15.000

Next Previous

Abstract

Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as nature gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which show a mixed conductivity under fuel conditions. This article reviews the recent developments of anode materials for SOFCs with carbon-based fuels. The future trend in this field is briefly summarized as well.

Figures

图1

图2

图3

图4

References

[ 1 ] Singhal S C,Kendall K. High Temperature Solid Oxide Fuel Cells:Fundamentals,Design,and Applications [M]. Amsterdam:Elsevier,2003.

[ 2 ] Atkinson A,Barnett S,Gorte R J,et al. Advanced anodes for high-temperature fuel cells [J]. Nat Mater,2004,3:17-27. link1

[ 3 ] Mclntosh S,Gorte R J. Direct hydrocarbon solid oxide fuel cells [J]. Chem Rev,2004,104 :4845-4865. link1

[ 4 ] Jiang S P,Chan S H. A review of anode materials development in solid oxide fuel cells [J]. J Mater Sci,2004,39:4405-4439. link1

[ 5 ] Mogensen M,Kammer K. Conversion of hydrocarbons in solid oxide fuel cells [J]. Annu Rev Mater Res,2003,33:321-331. link1

[ 6 ] Fergus J W. Oxide anode materials for solid oxide fuel cells [J]. Solid State Ionics,2006,177:1529-1541.

[ 7 ] Sun C W,Stimming U. Recent anode advances in solid oxide fuel cells [J]. J Power Sources,2007,171:247-260. link1

[ 8 ] Lashtabeg A,Skinner S J. Solid oxide fuel cells- a challenge for materials chemists? [J] J Mater Chem,2006,16:3160-3170. link1

[ 9 ] Fuel Cell Handbook,7th ed.,US Department of Energy,Morgantown,WV,2004,www.netl.doe.gov [EB/OL]. link1

[10] Gorte R J,Vohs J M. Novel SOFC anodes for the direct electrochemicaloxidationofhydrocarbons [J].JCatal,2003,216:477-486. link1

[11] Brown M,Primdahl S,Mogensen M. Structure/performance relations for Ni/ytrria-stabilized zirconia anodes for solid oxide fuel cells [J]. J Electrochem Soc,2000,147:475-485.

[12] Tanner C W,Fung K Z,Virkar A V. The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis [J]. J Electrochem Soc,1997,144:21-30.

[13] Wilson J R,Kobsiriphat W,Mendoza R,et al. Three- dimensional reconstruction of a solid-oxide fuel-cell anode,Nat. Mater,2006,5:541-544. link1

[14] Brandon N P,Skinner S,Steele B C H. Recent advances in materials for fuel cells [J]. Annu Rev Mater Res,2003,33:183-213. link1

[15] Suzuki T,Hasan Z,Funahashi Y,et al. Impact of anode microstructure on solid oxide fuel cells [J]. Science,2009,325:852-855. link1

[16] Minh N Q. Ceramic fuel-cells [J]. J Am Ceram Soc,1993,76: 563-588. link1

[17] Zhu W Z,Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater Sci Eng,A2003,362:228-239. link1

[18] Steele B C H. Appraisal of Ce1- yGdyO2- y/2 electrolytes for ITSOFC operation at500℃[J]. Solid State Ionics,2000,129:95-110. link1

[19] Murray E P,Tsai T,Barnett S A. A direct- methane fuel cell with a ceria-based anode [J]. Nature,1999,400:649-651. link1

[20] Park S,Vohs J M,Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404:265-267. link1

[21] McIntosh S,Vohs J M,Gorte R J. Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs [J]. J Electrochem Soc,2003,150:A470-A476.

[22] Kim H,Lu C,Worrell W L,et al. Cu-Ni ceramet anodes for direct oxidation of methane in solid-oxide fuel cells [J]. J Electrochem Soc,2002,149:A247-A250.

[23] Lee S,Vohs J M,Gorte R J. A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ [J]. J Electrochem. Soc,2004,151:A1319-A1323.

[24] Xie Z,Zhu W,Zhu B,et al. FexCo0.5-x-SDC anodes for low-temperature solid oxide fuel cells [J]. Electrochim Acta,2006,51: 3052-3057. link1

[25] Sun C W,Sun J,Xiao G L,et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres [J]. J Phys Chem B,2006,110:13445-13452. link1

[26] Skorodumova N V,Simak S I,Lundqvist B I,et al. Quantum origin of the oxygen storage capability of ceria [J]. Phys Rev Lett,2002,89:166601. link1

[27] Marina O A,Mogensen M. High- temperature conversion of methane on a composite gadolinia- doped ceria- gold electrode [J]. Appl Catal A,1999,189:117-126. link1

[28] Saeki M J,Uchida H,Watanabe M. Nobel metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature [J]. Catal Lett,1994,26:149-157. link1

[29] Hibino T,Hashimoto A,Yano M,et al. Ru- catalyzed anode materials for direct hydrocarbon SOFCs [J]. Electrochim Acta, 2003,48:2531-2537. link1

[30] Zhan Z,Barnett S A. An octane-fueled solid oxide fuel cell [J]. Science,2005,308:844-847. link1

[31] Sun C W,Xie Z,Xia C R,et al. Invesitigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells [J]. Electrochem Commun,2006,8:833-838. link1

[32] Ramirez-Cabrera E,Atkinson A,Chadwick D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis [J]. Solid State Ionics,200,136:825-831. link1

[33] Antonucci V,Faro M L,Rosa D L. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 [C]// Turkey,Istanbul:2005.

[34] Wisniewski M,Boreave A,Gelin P. Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x [J].CatalCommun,2005,6:596-600. link1

[35] Hibino T,Hashimoto A,Yano M,et al. High performance anodes for SOFCs operting in methane-air mixture at reduced temperatures [J]. J Electrochem Soc,2002,149:A133-A136.

[36] Ahn K,He H P,Vohs J M,et al. Enhanced thermal stability of SOFC anodes made with CeO2- ZrO2 solutions[J]. Electrochem Solid-State Lett,2005,8:A414-A417.

[37] Ye X F,Huang B,Wang S R,et al. Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel[J]. J Power Sources,2007,164:203-209. link1

[38] Hirabayashi D,Hashimoto A,Hibino T,et al. Bi-based oxide anodes for direct hydrocarbon SOFCs at intermediate temperatures,Electrochem[J]. Solid-State Lett,2004,7:A108-A110.

[39] Yang L,Choi Y,Qin W,et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells [J]. Nature Commun,2011,2. DOI: 10.1038/ncomms1359.

[40] Boukamp B A. The amazing perovskite anode [J]. Nat Mater, 2003,2:294-296. link1

[41] Tao S W,Irvine J T S. A redox-stable efficient anode for solid oxide fuel cells [J]. Nat Mater,2003,2:320-323. link1

[42] Zha S W,Tsang P,Cheng Z,et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1- xMnxO3 under anodic conditions [J]. J Solid State Chem,2005,178:1844-1850. link1

[43] Huang Y H,Dass R I,Denyszyn J C,et al. Synthesis and characterization of Sr2MgMoO6- δ [J]. J Electrochem Soc,2006,153: A1266-A1272.

[44] Huang Y H,Dass R I,Xing Z L,et al. Double perovskites as anode materials for solid- oxide fuel cells [J]. Science,2006, 312:254-257. link1

[45] Zhang P,Huang Y,Cheng J,et al. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels [J]. J Power Sources,2011,196:1738-1743. link1

[46] Yang L,Wang S,Blinn K,et al.,Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:BaZr0.1Ce0.7Y0.2- x YbxO3-δ [J]. Science,2009,326:126-129.

[47] Vernoux P,Guillodo M,Fouletier J,et al. Alternative anode material for gradual methane reforming in solid oxide fuel cells [J]. Solid State Ionics,2000,135:425-431. link1

[48] Sauvet A L,Fouletier J. Electrochemical properties of a new type of anode material La1-xSrxCr1-yRuyO3-δ for SOFC under hydrogen and methane at intermediate temperatures [J]. Electrochim Acta,2001,47:987-995. link1

[49] Sauvet A L,Fouletier J,Gaillard F,et al. Surface properties and physicochemical characterizations of a new type of anode material,La1- xSrxCr1- yRuyO3- δ,for a solid oxide fuel cell under methane at intermediate temperature [J]. J Catal,2002,209:25-34. link1

[50] Sauvet A L,Irvine J T S A. Catalytic activity for steam methane reforming and physical characterization of La1-xSrxCr1-yNiyO3-δ [J]. Solid State Ionics,2004,167:1-8. link1

[51] Liu J,Madsen B D,Ji Z Q,et al. A fuel- flexible ceramicbased anode for solid oxide fuel cells [J]. Electrochem SolidState Lett,2002,5:A122-A124.

[52] Chen X J,Liu Q L,Khor K A,et al. High-performance (La,Sr) (Cr,Mn)O3/(Gd,Ce)O2-δ composite anode for direct oxidation of methane [J]. J Power Sources,2007,165:34-40. link1

[53] Jiang S P, Chen X J,Chan S H,et al. GDC- impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 anodes for direct utilization of methane in solid oxide fuel cells [J]. J Electrochem Soc,2006,153: A850-A856.

[54] Zhu X,Lv Z,Wei B,et al. Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3- δ impregnated anodes [J]. J Power Sources,2010,195:1793-1798. link1

[55] Jiang S P,Ye Y,HeT,et al. Nanostructured palladiumLa0.75Sr0.25Cr0.5Mn0.5O3/Y2O3- ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells [J]. J Power Sources, 2008,185:179-182. link1

[56] Sin A,Kopnin E,Dubitsky Y,et al. Antonucci,Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells [J]. J Power Sources,2005,145:68-73. link1

[57] Faro M L,Rosa D L,Nicotera I,et al. Electrochemical behavior of propane- fed solid fuel cells based on low Ni content anode catalysts [J]. Electrochimica Acta,2009,54:5280-5285. link1

[58] Slater P R,Fagg D P,Irvine J T S. Synthesis and electrical characterization of doped perovskite titanates as potential anode materials for solid oxide fuel cells [J]. J Mater Chem,1997,7: 2495-2498. link1

[59] Mukundan R,Brosha E L,Garzon F H. Sulfur tolerant anodes for SOFCs [J]. Electrochem Solid-State Lett,2004,7:A5-A7.

[60] Balachandran U,Eror N G. Electrical conductivity in strontium titanate [J]. J Solid State Chem,1981,9:351-359. link1

[61] Kolodiazhnyi T,Petric A. The applicability of Sr- deficient ntype SrTiO3 for SOFC anodes [J]. JElectroceramics,2005,15:5-11. link1

[62] Marina O A,Canfield N L,Stevenson J W. Thermal,electrical,and electrocatalytical properties of lanthanum-doped strontium titanate [J]. Solid State Ionics,2002,149:21-28. link1

[63] Li X,Zhao H,Shen W,et al. Synthesis and properties of Ydoped SrTiO3 as an anode material for SOFCs [J]. J Power Sources,2007,166:47-52. link1

[64] Périllat-Merceroz C,Gauthier G,Roussel P,et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane [J]. Chem Mater,2011,23: 1539-1550. link1

[65] Hui S,Petric A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells [J]. J Eur Ceram Soc,20023,22: 1673-1681. link1

[66] Vernoux P,Djurado E,Guillodo M. Catalytic and electrochemical properties of doped lanthanum chromites as new anode materials for solid oxide fuel cells [J]. J Am Ceram Soc,2001,84: 2289-2295. link1

[67] Ruiz-Morales J C,Canales-vazqzez J,Savaniu C,et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation [J]. Nature,2006,439:568-571. link1

[68] Bastidas D M,Tao S W,Irvine J T S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes [J]. J Mater Chem,2006,16:1603-1605. link1

[69] Liu Q,Dong X,Xiao G,et al. A novel electrode material for symmetrical SOFCs [J]. Adv Mater,2010,22:5478-5482. link1

[70] Ruiz-Morales J C,Canales-Vazquez J,Pena-Martinez J,et al. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells [J]. Electrochim Acta,2006,52:278-284. link1

[71] Yang C,Yang Z,Jin C,et al. Sulfur-tolerant redox- reversible anode material for direct hydrocarbon solid oxide fuel cells [J]. Adv Mater,2012,24:1439-1443. link1

[72] Matsuzaki Y,Yasuda I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part I. Dependence on temperature,time,and impurity concentration [J]. Solid State Ionics,2000,132:261-269. link1

[73] Wang S Z,Liu M L,Winnick J. Stabilities and electrical conductivities of electrode materials for use in H2S-containing gases [J]. J Solid State Electrochem,2001,5:188-195. link1

[74] He H P,Gorte R J,Vohs J M. Highly sulfur tolerant Cu-ceria anodes for SOFCs [J]. Electrochem Solid- State Lett,2005,8: A279-A280. link1

[75] Kurokawa H,Sholklapper T Z,Jacobson C P,et al. Ceria nanocoating for sulfur tolerant Ni- based anodes of solid oxide fuel cells [J]. Electrochem Solid State Lett,2007,10:B135-B138.

[76] Mukundan R,Brosha E L,Garzon F H. Sulfur tolerant anodes for SOFCs [J]. Electrochem Solid-State Lett,2004,7:A5-A7.

[77] Lu X C,Zhu J H,Yang Z G,et al. Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells [J]. J Power Sources,2009,192:381-384. link1

[78] Kurokawa H,Yang L,Jacobson C P,et al. Y- doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells [J]. J Power Sources,2007,164:510-518. link1

[79] Zha S W,Cheng Z,Liu M L. A sulfur-tolerant anode material for SOFCs [J]. Electrochem Solid-State Lett,2005,8:A406-A408.

[80] Flytzani-Stephanopoulos M,Sakbodin M,Wang Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides [J]. Science,2006,312:1508-1510. link1

Related Research