资源类型

期刊论文 6

会议视频 1

年份

2021 2

2017 3

2016 1

2014 1

关键词

智能制造 1

纳米医学 1

肺癌 1

诊断,治疗 1

检索范围:

排序: 展示方式:

纳米技术和纳米医学——肺癌诊断和治疗的希望之路 Review

尹伟, 潘峰, 朱俊杰, 徐军武, Diego Gonzalez-Rivas, Meinoshin Okumura, 唐志勇, 杨洋

《工程(英文)》 2021年 第7卷 第11期   页码 1577-1585 doi: 10.1016/j.eng.2020.04.017

摘要:

肺癌是全球最常见的癌症,五年总生存率非常低。肺癌的常规诊断和治疗策略具有内在局限性,这就推动了纳米技术和纳米医学方法的发展,以提高早期诊断率并开发更有效、更安全的肺癌治疗方案。癌症纳米医学旨在根据每个患者独特的生理和病理特征(在基因组和蛋白质组水平上)来制定药物递送、诊断和治疗方案,在该领域引起广泛关注。尽管纳米医学技术在肺癌的科学研究中获得成功应用,但由于对纳米技术与生物学之间的相互作用知之甚少,以及毒理学、药理学、免疫学和纳米颗粒的大规模制造等方面的挑战,使得纳米医学方法的临床转化仍然具有挑战性。在本文中,我们强调了用于肺癌治疗的纳米医学的发展和机遇,并展望了该领域的前景,以及讨论了其在临床转化中面临的挑战。

关键词: 纳米医学     肺癌     诊断,治疗    

Translational initiatives in thrombolytic therapy

null

《医学前沿(英文)》 2017年 第11卷 第1期   页码 1-19 doi: 10.1007/s11684-017-0497-8

摘要:

Once thrombi have formed as part of the pathology defining myocardial infarction, ischemic stroke, peripheral arterial disease, deep venous thrombosis or other embolic disorders, the only clinically meaningful thrombolytic agents available for reversing the thrombogenic process are various plasminogen activators. These agents are enzymes that reverse fibrin polymerization underlying the coagulation process by converting endogenous plasminogen to plasmin, which cleaves the fibrin network to form increasingly smaller protein fragments, a process known as fibrinolysis. For the most part, the major clinically used thrombolytics, tissue plasminogen activator, urokinase and streptokinase, as well as the experimentally investigated agent staphylokinase, are the products of recombinant DNA technology, which permits molecular optimization of clinical efficacy. In all cases of molecular optimization and targeting, however, the primary challenge of thrombolytic therapy remains hemorrhagic side effects, which are especially devastating when they occur intracerebrally. Currently, the best strategy to ameliorate this adverse effect is nanoparticulate encapsulation or complexation, and many strategies of this sort are being actively pursued. This review summarizes the variety of targeted and untargeted thrombolytic formulations that have been investigated in preclinical studies.

关键词: thrombolytics     nanomedicine     plasminogen activators    

Polymeric micelle nanocarriers in cancer research

Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 348-359 doi: 10.1007/s11705-016-1582-2

摘要: Amphiphilic block copolymers (ABCs) assemble into a spherical nanoscopic supramolecular core/shell nanostructure termed a polymeric micelle that has been widely researched as an injectable nanocarrier for poorly water-soluble anticancer agents. The aim of this review article is to update progress in the field of drug delivery towards clinical trials, highlighting advances in polymeric micelles used for drug solubilization, reduced off-target toxicity and tumor targeting by the enhanced permeability and retention (EPR) effect. Polymeric micelles vary in stability in blood and drug release rate, and accordingly play different but key roles in drug delivery. For intravenous (IV) infusion, polymeric micelles that disassemble in blood and rapidly release poorly water-soluble anticancer agent such as paclitaxel have been used for drug solubilization, safety and the distinct possibility of toxicity reduction relative to existing solubilizing agents, e.g., Cremophor EL. Stable polymeric micelles are long-circulating in blood and reduce distribution to non-target tissue, lowering off-target toxicity. Further, they participate in the EPR effect in murine tumor models. In summary, polymeric micelles act as injectable nanocarriers for poorly water-soluble anticancer agents, achieving reduced toxicity and targeting tumors by the EPR effect.

关键词: nanomedicine     parenteral     poly(ethylene glycol)     poly(lactic acid)     reformulation    

Engineering platelet-mimicking drug delivery vehicles

Quanyin Hu, Hunter N. Bomba, Zhen Gu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 624-632 doi: 10.1007/s11705-017-1614-6

摘要: Platelets dynamically participate in various physiological processes, including wound repair, bacterial clearance, immune response, and tumor metastasis. Recreating the specific biological features of platelets by mimicking the structure of the platelet or translocating the platelet membrane to synthetic particles holds great promise in disease treatment. This review highlights recent advancements made in the platelet-mimicking strategies. The future opportunities and translational challenges are also discussed.

关键词: drug delivery     platelets     nanomedicine     bio-inspired     biomimetic    

Barriers to advancing nanotechnology to better improve and translate nanomedicines

Yuwei WANG,David W. Grainger

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 265-275 doi: 10.1007/s11705-014-1442-x

摘要: Engineered nanomaterials and nanotechnologies promise many benefits to enhance both and performance. This is now manifest in the increasing number of reported biomedical products under development and testing that contain nanotechnologies as their distinguishing performance—enhancing components. In many cases, nano-sized materials are selected to provide a specific functional aspect that contributes to improved medical performance, either or . Nanoparticles are most commonly exploited in diverse roles in topical lotions and creams, solubilization aids, for and diagnostic and targeting agents in nanomedicines and theranostics. Despite fundamental scientific excitement and many claims to nanotechnology-based improvements in new biomedical applications, several fundamental and long-standing challenges remain to be addressed using nanomedicines to make clinically important progress. This review addresses several issues that must be fairly and objectively reported and then overcome to provide truly credible performance for nanomedicines.

关键词: nanotechnology     nanomedicine     drug delivery     therapeutic     target delivery    

Functional ferritin nanoparticles for biomedical applications

Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 633-646 doi: 10.1007/s11705-017-1620-8

摘要: Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.

关键词: nanomedicine     ferritin     drug delivery     bioassay     molecular imaging    

标题 作者 时间 类型 操作

纳米技术和纳米医学——肺癌诊断和治疗的希望之路

尹伟, 潘峰, 朱俊杰, 徐军武, Diego Gonzalez-Rivas, Meinoshin Okumura, 唐志勇, 杨洋

期刊论文

Translational initiatives in thrombolytic therapy

null

期刊论文

Polymeric micelle nanocarriers in cancer research

Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon

期刊论文

Engineering platelet-mimicking drug delivery vehicles

Quanyin Hu, Hunter N. Bomba, Zhen Gu

期刊论文

Barriers to advancing nanotechnology to better improve and translate nanomedicines

Yuwei WANG,David W. Grainger

期刊论文

Functional ferritin nanoparticles for biomedical applications

Zhantong Wang, Haiyan Gao, Yang Zhang, Gang Liu, Gang Niu, Xiaoyuan Chen

期刊论文

布拉德雷·尼尔森:机器人与纳米医学:医学机器人的未来发展方向(2019年9月18日)

2021年11月15日

会议视频