资源类型

期刊论文 30

年份

2022 2

2021 2

2020 2

2019 2

2018 1

2017 1

2016 2

2015 1

2014 2

2013 2

2012 1

2011 3

2009 1

2008 1

2007 1

2006 1

2003 1

2002 1

展开 ︾

关键词

EBSD 1

LC4CS 铝合金 1

X射线 1

三维细观模拟 1

乘坐舒适性 1

劈拉试验 1

力学性能 1

动张力 1

动态拉伸本构模型 1

反演设计 1

地下工程结构 1

应力波 1

抗拉强度 1

抗震塌 1

拉伸断口 1

提升钢丝绳系 1

支承垫片 1

断裂失效判据 1

橘皮成因 1

展开 ︾

检索范围:

排序: 展示方式:

Acoustic emissions evaluation of the dynamic splitting tensile properties of steel fiber reinforced concrete

《结构与土木工程前沿(英文)》   页码 1341-1356 doi: 10.1007/s11709-023-0988-4

摘要: This study empirically investigated the influence of freeze–thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete (SFRC). Brazilian disc splitting tests were conducted using four loading rates (0.002, 0.02, 0.2, and 2 mm/s) on specimens with four steel fiber contents (0%, 0.6%, 1.2%, and 1.8%) subjected to 0 and 50 freeze–thaw cycles. The dynamic splitting tensile damage characteristics were evaluated using acoustic emission (AE) parameter analysis and Fourier transform spectral analysis. The results quantified using the freeze–thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze–thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content. The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate, whereas that of high-frequency AE signals increased. Freeze–thaw action had little effect on the crack types observed during the early and middle stages of the loading process; however, the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze–thaw cycling. Notably, the results of this study indicate that the freeze–thaw damage to SFRC reduces AE signal activity at low frequencies.

关键词: steel fiber reinforced concrete     freeze–thaw cycling     Brazilian disc splitting test     acoustic emission technique     dynamic splitting tensile acoustic emission properties    

Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 396-401 doi: 10.1007/s11705-008-0077-1

摘要: A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the tensile properties of PP/KT microcomposites was studied by uniaxial tensile test and the morphological structures of the stretched specimens were observed by scanning electron microscopy (SEM) and polarized optical microscopy (POM). We found that the Young’s modulus of PP/KT specimens increased with filler content, while the yield and break of the specimens are related to the filler particles size. The yield stress, the breaking stress and the ultimate elongation of PP/KT specimens were close to those of unfilled iPP specimens when the maximal filler particles size is less than a critical value, which is 7 ?m at a crosshead speed of 10 mm/min and 3 ?m at 200 mm/min, close to that of glass bead but far more than those of other rigid inorganic filler particles. The interfacial interaction was further estimated from yield stress, indicating that KT particles have a moderate interfacial interaction with iPP matrix. Thus, the incorporation of small KT particles can reinforce iPP matrix and simultaneously cause few detrimental effects on the other excellent tensile properties of iPP matrix, due to their organic nature, higher specific area, solid true-spherical shape and the homogenous dispersion of the ROF particles in microcomposites.

关键词: maximal     uniaxial tensile     unfilled     excellent tensile     influence    

An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete

Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1299-1315 doi: 10.1007/s11709-020-0712-6

摘要: The tensile behavior of hybrid fiber reinforced concrete (HFRC) is important to the design of HFRC and HFRC structure. This study used an artificial neural network (ANN) model to describe the tensile behavior of HFRC. This ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC. In the model, three methods to process output features (no-processed, mid-processed, and processed) are discussed and the mid-processed method is recommended to achieve a better reproduction of the experimental data. This means the strain should be normalized while the stress doesn’t need normalization. To prepare the database of the model, both many direct tensile test results and the relevant literature data are collected. Moreover, a traditional equation-based model is also established and compared with the ANN model. The results show that the ANN model has a better prediction than the equation-based model in terms of the tensile stress-strain curve, tensile strength, and strain corresponding to tensile strength of HFRC. Finally, the sensitivity analysis of the ANN model is also performed to analyze the contribution of each input feature to the tensile strength and strain corresponding to tensile strength. The mechanical properties of plain concrete make the main contribution to the tensile strength and strain corresponding to tensile strength, while steel fibers tend to make more contributions to these two items than PVA fibers.

关键词: artificial neural network     hybrid fiber reinforced concrete     tensile behavior     sensitivity analysis     stress-strain curve    

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 289-298 doi: 10.1007/s11465-016-0393-y

摘要:

Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

关键词: tensile properties     ultimate tensile strength     tensile elongation     friction stir welding     tool rotational speed     genetic programming     welding speed    

Biaxial tensile-compressive experiment of concrete at high temperatures

SONG Yupu, ZHANG Zhong, QING Likun, YU Changjiang

《结构与土木工程前沿(英文)》 2007年 第1卷 第1期   页码 94-98 doi: 10.1007/s11709-007-0009-z

摘要: Biaxial tension-compression experiments of concrete of five stress ratios at high temperatures were carried out using the large static-dynamic triaxial test system in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. The stress ratios s1/s3 are 0, 0.1, 0.25, 0.50, and 0.75. The temperatures are 20vH, 200vH, 300vH, 500vH, 600vH. The mechanical behavior of concrete under biaxial tension-compression at high temperatures is analyzed. It is found that both the tensile strength and strain diminished with the increase in temperature under each stress ratio. Based on the test results, the relationship between tensile strengths and stress ratios and temperature is proposed. In addition, the failure criterion of concrete under biaxial stress state of tension-compression at high temperatures is established.

关键词: increase     Offshore Engineering     temperature     relationship     addition    

Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene

Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 103-109 doi: 10.1007/s11705-013-1315-8

摘要: A series of tensile and ratcheting experiments for compacted polytetrafluoroethylene (PTFE) and bronze filled PTFE (PTFE/bronze) were conducted on dynamic mechanical analyzer (DMA-Q800). The effects of mean stress, stress amplitude and temperature on the ratcheting behaviors of PTFE and PTFE/bronze were investigated. It is found that the stress-strain response of PTFE/bronze is nonlinear and its elastic modulus is higher than that of pure PTFE. For uniaxial ratcheting test, the dissipation strain energy density (DSED) decreases rapidly in the first 10 cycles and approaches a constant after 20 cycles. The ratcheting strain and the DSED corresponding to 100 cycles increase with increasing mean stress, stress amplitude and temperature. Additionally, the DSED and ratcheting strain of PTFE/bronze are much lower than those of pure PTFE under the same experimental conditions. It is also found that both pure PTFE and PTFE/bronze present cyclic hardening characteristics. Above all, the addition of bronze can improve both the uniaxial tensile property and the cyclic property of PTFE.

关键词: bronze filled polytetrafluoroethylene (PTFE/bronze)     uniaxial tensile behavior     ratcheting behavior     dissipation strain energy density (DSED)    

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 270-278 doi: 10.1007/s11709-017-0408-8

摘要: In this paper, a combined DEM-MD method is proposed to simulate the crack failure process of Hydrated Cement Paste (HCP) under a tensile force. A three-dimensional (3D) multiscale mechanical model is established using the combined Discrete Element Method (DEM)-Molecular Dynamics (MD) method in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). In the 3D model, HCP consists of discrete particles and atoms. Simulation results show that the combined DEM-MD model is computationally efficient with good accuracy in predicting tensile failures of HCP.

关键词: hydrated cement paste     multiscale     MD simulation     DEM    

Time- and temperature-dependence of compressive and tensile behaviors of polypropylene fiber-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1025-1037 doi: 10.1007/s11709-021-0741-9

摘要: The understanding of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill (FR-CPB) play crucial roles in the successful implementation of reinforcement technique in underground mine backfilling operations. However, very limited studies have been performed to gain insight into the evolution of compressive and tensile behaviors and associated mechanical properties of FR-CPB under various curing temperatures from early to advanced ages. Thus, this study aims to investigate the time (7, 28, and 90 d)- and temperature (20°C, 35°C, and 45°C)-dependence of constitutive behavior and mechanical properties of FR-CPB. The obtained results show that pre- and post-failure behaviors of FR-CPB demonstrate strongly curing temperature-dependence from early to advanced ages. Moreover, the pseudo-hardening behavior is sensitive to curing temperature, especially at early ages. Furthermore, the mechanical properties including elastic modulus, material stiffness, strengths, brittleness, cohesion, and internal friction angle of FR-CPB show increasing trends with curing temperature as curing time elapses. Additionally, a predictive model is developed to capture the strong correlation between compressive and tensile strength of FR-CPB. The findings of this study will contribute to the successful implementation of FR-CPB technology.

关键词: cemented paste backfill     fiber reinforcement     constitutive behavior     temperature     tailings    

Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature

Zhide Li,Hao Gu,Kaiguang Luo,Charlie Kong,Hailiang Yu,

《工程(英文)》 doi: 10.1016/j.eng.2023.01.019

摘要: ty. In this study, cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility. The results show that, for different cryorolling strains, the uniform elongation was greatly increased without sacrificing the strength after annealing. A yield strength of 607 MPa and a uniform elongation of 11.7% were obtained after annealing at a small cryorolling strain (ε = 0.22), while annealing at a large cryorolling strain (ε = 1.6) resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD) were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling, with an additional contribution from grain refinement and the formation of dislocation walls. The high ductility could be attributed to annealing twins and micro-shear bands during stretching, which improved the strain hardening capacity. The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains, which provides a new reference for the design of future thermo-mechanical processes.

关键词: Cryorolling     Annealing     Nickel     Strain hardening     Ductility    

Prediction of cyclic large plasticity for prestrained structural steel using only tensile coupon tests

Liang-Jiu JIA, Tsuyoshi KOYAMA, Hitoshi KUWAMURA

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 466-476 doi: 10.1007/s11709-013-0219-5

摘要: Cold-formed steel members, which experience complicated prestrain histories, are frequently applied in structural engineering. This paper aims to predict cyclic plasticity of structural steels with tensile and compressive prestrain. Monotonic and cyclic tests on hourglass specimens with tensile and compressive prestrain are conducted, and compared with numerical simulations using the Chaboche model. Two approaches are taken in the simulation. The first requires only the monotonic tensile test data from the prestrained steels, and the second requires both the monotonic tensile test data from the virgin steel and the prestrain histories. The first approach slightly overestimates the compressive stress for specimens with tensile prestrain, while the second approach is able to accurately predict the cyclic plasticity in specimens with tensile and compressive prestrain.

关键词: cyclic plasticity     prestrain     Chaboche model     mild steel    

Effect of TGO on the tensile failure behavior of thermal barrier coatings

Le WANG, Yuelan DI, Ying LIU, Haidou WANG, Haoxing YOU, Tao LIU

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 452-460 doi: 10.1007/s11465-019-0541-2

摘要: Thermally grown oxide (TGO) may be generated in thermal barrier coatings (TBCs) after high-temperature oxidation. TGO increases the internal stress of the coatings, leading to the spalling of the coatings. Scanning electron microscopy and energy-dispersive spectroscopy were used to investigate the growth characteristics, microstructure, and composition of TGO after high-temperature oxidation for 0, 10, 30, and 50 h, and the results were systematically compared. Acoustic emission (AE) signals and the strain on the coating surface under static load were measured with AE technology and digital image correlation. Results showed that TGO gradually grew and thickened with the increase in oxidation time. The thickened TGO had preferential multi-cracks at the interface of TGO and the bond layer and delayed the strain on the surface of the coating under tensile load. TGO growth resulted in the generation of pores at the interface between the TGO and bond layer. The pores produced by TGO under tensile load delayed the generation of surface cracks and thus prolonged the failure time of TBCs.

关键词: thermally grown oxides     thermal barrier coatings     acoustic emission technology     digital image correlation     pores    

Key problems and solutions in arch dam heightening

Zuoguang FU, Yunlong HE, Sheng SU

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 98-104 doi: 10.1007/s11709-010-0004-7

摘要: The dam heightening, which is an effective way to increase reservoir volume, has been paid close attention by engineers. Three problems should be dealt with when an arch dam needs to be heightened: stress state getting worse at dam heel, cracking on new added concrete dam surface, and weak bonding between new added concrete and old dam. Taking Geba arch dam as an example, these problems are examined in details through simulation analysis by the finite element method. The tensile stresses on dam’s surface and joint face that have certain relations to the dam heightening can be controlled by some measures.

关键词: arch dam     heighten     tensile stress     finite element method    

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

《能源前沿(英文)》 2009年 第3卷 第2期   页码 193-197 doi: 10.1007/s11708-009-0030-0

摘要: Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

关键词: supercritical water cooled reactor     tensile     impact toughness     corrosion     aging    

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 229-240 doi: 10.1007/s11709-019-0597-4

摘要: The purpose of the investigation was to study the effect of binary and ternary blends of cement on the mechanical properties of pervious concrete (PC) specimen through destructive (DT) and non-destructive testing (NDT). Various combinations of fly ash (FA), limestone powder (LP), metakaolin (MK), and silica fume (SF) as mineral admixtures have been investigated to partially replace the cement up to 30% by weight in PC. Standard cube specimens of size 150 mm × 150 mm × 150 mm of binary and ternary blends of mineral admixture of pervious concrete were prepared to conduct standard compressive strength test and split tensile test at 7 and 28 days of curing. The ultrasonic pulse velocity (UPV) test and Rebound Hammer test were used as a non-destructive testing tool to substantiate the robustness of PC and to determine the approximate mechanical properties where other destructive testing tools are not feasible in case of in-place pervious pavements. Overall the pervious concrete made with LP based ternary blends (PLM and PLS) were found to perform better than FA based ternary blends (PFM and PFS) and control mix (PC) in destructive and non-destructive testing.

关键词: mineral admixture     ternary     compressive strength     split tensile strength     pervious concrete     ultrasonic pulse velocity    

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1017-1028 doi: 10.1007/s11709-022-0871-8

摘要: The effect of size on the biaxial flexural strength (BFS) of Portland cement mortar was investigated by using the recently proposed triangular plate method (TPM). An experimental program was conceived to study the size effect by keeping a constant water-cement ratio of 0.485, cement-sand ratio of 1:2.75, and using unreinforced triangular mortar plates of five different thicknesses and seven different side lengths. The BFS of the produced specimens was tested, and variations of BFS depending on specimen thickness and side length were determined. The results indicated that increases in triangular plate specimen side length and specimen thickness led to a decrease in the BFS of Portland cement mortar. The effect of specimen length increase on BFS was more significant than on the effect of the specimen thickness. The variations in specimens’ thickness indicated a deterministic Type I size effect, while the variations in specimens’ length showed an energetic-statistical Type I size effect.

关键词: testing     apparatus & methods     plain concrete     tensile properties     biaxial flexural strength     triangular plate method    

标题 作者 时间 类型 操作

Acoustic emissions evaluation of the dynamic splitting tensile properties of steel fiber reinforced concrete

期刊论文

Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

期刊论文

An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete

Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG

期刊论文

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

期刊论文

Biaxial tensile-compressive experiment of concrete at high temperatures

SONG Yupu, ZHANG Zhong, QING Likun, YU Changjiang

期刊论文

Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene

Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG

期刊论文

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

期刊论文

Time- and temperature-dependence of compressive and tensile behaviors of polypropylene fiber-reinforced

期刊论文

Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature

Zhide Li,Hao Gu,Kaiguang Luo,Charlie Kong,Hailiang Yu,

期刊论文

Prediction of cyclic large plasticity for prestrained structural steel using only tensile coupon tests

Liang-Jiu JIA, Tsuyoshi KOYAMA, Hitoshi KUWAMURA

期刊论文

Effect of TGO on the tensile failure behavior of thermal barrier coatings

Le WANG, Yuelan DI, Ying LIU, Haidou WANG, Haoxing YOU, Tao LIU

期刊论文

Key problems and solutions in arch dam heightening

Zuoguang FU, Yunlong HE, Sheng SU

期刊论文

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

期刊论文

Experimental investigation on mechanical properties of binary and ternary blended pervious concrete

Rekha SINGH, Sanjay GOEL

期刊论文

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

期刊论文