Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 6 doi: 10.15302/J-SSCAE-2023.06.020

Hydrogen Production by Proton Exchange Membrane Water Electrolysis in the Presence of Wind-Solar Fluctuating Power Supply: Development and Application

1. State Grid Zhejiang Electric Power Co., Ltd. Electric Power Research Institute, Hangzhou 310014, China;

2. Beijing Institute of Smart Energy, Beijing 102209, China

Funding project:State Grid Technology project (5211DS22000N) Received: 2023-10-16 Revised: 2023-12-01 Available online: 2023-12-21

Next Previous

Abstract

Developing the proton exchange membrane (PEM) water electrolysis technology with flexibility in a wider load is an effective pathway to couple renewable energies with water electrolysis for hydrogen production and to achieve renewable energy consumption. This study first reviews scenarios of hydrogen production through the coupling of renewable electricity such as wind and photovoltaic power with fluctuating loads, and analyzes the fluctuation characteristics of renewable energy. Subsequently, it elaborates on the basic characteristics and research progress of water electrolysis for hydrogen production from three aspects: effect of fluctuating power on electrolysis cells, accelerated degradation of electrolysis components, and simulation methods for fluctuating power. Furthermore, the research and development directions of PEM electrolysis cell technology and PEM electrolysis for hydrogen production are explored. The current status and economic feasibility of wind-solar-coupled hydrogen production as well as the industrial application trends of hydrogen production under fluctuating power are clarified. Finally, we propose the following suggestions: (1) deepening the research of fundamental scientific issues and core components of electrolysis cells, (2) further reducing hydrogen production costs, and (3) optimizing the layout of wind-solar-coupled hydrogen production and institutional guarantee.

Figures

图1

References

[ 1 ] 程文姬, 赵磊, 郗航, 等. “十四五” 规划下氢能政策与电解水制氢研究 [J]. 热力发电, 2022, 51(11): 181‒188.
Cheng W J, Zhao L, Xi H, et al. Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan [J]. Thermal Power Generation, 2022, 51(11): 181‒188.

[ 2 ] The role of CCUS in low-carbon power systems [EB/OL]. (2020-06-15)[2023-10-15]. https://www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems.

[ 3 ] Akinyele D O, Rayudu R K. Review of energy storage technologies for sustainable power networks [J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74‒91.

[ 4 ] Yang W, Sun L, Tang J, et al. Multiphase fluid dynamics and mass transport modeling in a porous electrode toward hydrogen evolution reaction [J]. Industrial & Engineering Chemistry Research, 2022, 61: 8323‒8332.

[ 5 ] Zhou P F, Wong P K, Niu P D, et al. Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance [J]. Science China Materials, 2023, 66(3): 1033‒1041.

[ 6 ] 顾方伟, 杨雪, 林伟. 质子交换膜电解水氧化铱析氧催化剂的研究进展 [J]. 石油炼制与化工, 2022, 53(9): 115‒122.
Gu F W, Yang X, Lin W. Research advancenment of iridium oxide catalysts for the oxygen evolution reaction of proton exchange membrane water electrolysis [J]. Petroleum Processing and Petrochemicals, 2022, 53(9): 115‒122.

[ 7 ] Guo D D, Yu H M, Chi J. et al. Self-supporting NiFe LDHs@Co-OH-CO3 nanorod array electrode for alkaline anion exchange membrane water electrolyzer [J]. Journal of Electrochemistry, 2022, 28(9): 2214003.

[ 8 ] 张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性 [J]. 广东化工, 2021, 48(18): 3‒6, 24.
Zhang Y K, Chen H J, Sun Z X, et al. Efficiency and economy of hydrogen production from high temperature solid oxide electrolysis of water [J]. Guangdong Chemical Industry, 2021, 48(18): 3‒6, 24.

[ 9 ] 温昶, 张博涵, 王雅钦, 等. 高效质子交换膜电解水制氢技术研究进展 [J]. 华中科技大学学报 (自然科学版), 2023, 51(1): 111‒122.
Wen C, Zhang B H, Wang Y Q, et al. Research progress of high efficiency proton exchange membrane water electrolysis technology [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(1): 111‒122.

[10] 张立栋, 陈怡冰, 龚明, 等. 质子交换膜电解水制氢影响因素的过程模拟 [J]. 综合智慧能源, 2022, 44(5): 88‒94.
Zhang L D, Chen Y B, Gong M, et al. Process simulation of factors affecting proton exchange membrane water electrolysis forhydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 88‒94.

[11] 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析 [J]. 储能科学与技术, 2020, 9(3): 688‒695.
Guo X Y, Li X M, Xu Z, et al. Cost analysis of hydrogen production by electrolysis of renewable energy [J]. Energy Storage Science and Technology, 2020, 9(3): 688‒695.

[12] 葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述 [J]. 综合智慧能源, 2022, 44(5): 1‒14.
Ge L J, Cui Q X, Li M W, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1‒14.

[13] Huang C J, Zong Y, You S, et al. Cooperative control of wind-hydrogen-SMES hybrid systems for fault-ride-through improvement and power smoothing [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1‒7.

[14] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测 [J]. 太阳能学报, 2021, 42(5): 252‒259.
Zhang N, Ge L J. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm [J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252‒259.

[15] Sahin M E, Okumus H İ, Aydemir M T. Implementation of an electrolysis system with DC/DC synchronous buck converter [J]. International Journal of Hydrogen Energy, 2014, 39(13): 6802‒6812.

[16] Garrigós A, Lizán J L, Blanes J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter [J]. International Journal of Hydrogen Energy, 2014, 39(36): 20907‒20919.

[17] Jia J Y, Seitz L C, Benck J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% [J]. Nature Communications, 2016, 7: 13237.

[18] Sørensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1381‒1402.

[19] Nanahara T, Asari M, Sato T, et al. Smoothing effects of distributed wind turbines. Part 1. Coherence and smoothing effects at a wind farm [J]. Wind Energy, 2004, 7(2): 61‒74.

[20] Harrouni S, Guessoum A, Maafi A. Classification of daily solar irradiation by fractional analysis of 10-Min-means of solar irradiance [J]. Theoretical and Applied Climatology, 2005, 80(1): 27‒36.

[21] Tomson T, Tamm G. Short-term variability of solar radiation [J]. Solar Energy, 2006, 80(5): 600‒606.

[22] Gandía L M, Oroz R, Ursúa A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions [J]. Energy & Fuels, 2007, 21(3): 1699‒1706.

[23] Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover [J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921‒14933.

[24] Schalenbach M, Stolten D. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover [J]. Electrochimica Acta, 2015, 156: 321‒327.

[25] Stansberry J M, Brouwer J. Experimental dynamic dispatch of a 60 kW proton exchange membrane electrolyzer in power-to-gas application [J]. International Journal of Hydrogen Energy, 2020, 45(16): 9305‒9316.

[26] Bamisile O, Cai D S, Oluwasanmi A, et al. Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals [J]. Scientific Reports, 2022, 12: 9644.

[27] Lin M Y, Hourng L W. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis [J]. International Journal of Energy Research, 2014, 38(1): 106‒116.

[28] Rocha F, de Radiguès Q, Thunis G, et al. Pulsed water electrolysis: A review [J]. Electrochimica Acta, 2021, 377: 138052.

[29] Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation [J]. International Journal of Hydrogen Energy, 2019, 44(57): 29889‒29898.

[30] Rakousky C, Reimer U, Wippermann K, et al. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis [J]. Journal of Power Sources, 2016, 326: 120‒128.

[31] Rakousky C, Reimer U, Wippermann K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power [J]. Journal of Power Sources, 2017, 342: 38‒47.

[32] Grigoriev S A, Dzhus K A, Bessarabov D G, et al. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20440‒20446.

[33] Lettenmeier P, Wang R, Abouatallah R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities [J]. Electrochimica Acta, 2016, 210: 502‒511.

[34] Cherevko S, Geiger S, Kasian O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1. Metallic iridium [J]. Journal of Electroanalytical Chemistry, 2016, 773: 69‒78.

[35] Siracusano S, Baglio V, Van Dijk N, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer [J]. Applied Energy, 2017, 192: 477‒489.

[36] Gago A S, Bürkle J, Lettenmeier P, et al. Degradation of proton exchange membrane (PEM) electrolysis: The influence of current density [J]. ECS Transactions, 2018, 86(13): 695‒700.

[37] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1‒14.

[38] Feng Q, Yuan X Z, Liu G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies [J]. Journal of Power Sources, 2017, 366: 33‒55.

[39] Wang X Y, Zhang L S, Li G F, et al. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance [J]. Electrochimica Acta, 2015, 158: 253‒257.

[40] Marocco P, Sundseth K, Aarhaug T, et al. Online measurements of fluoride ions in proton exchange membrane water electrolysis through ion chromatography [J]. Journal of Power Sources, 2021, 483: 229179.

[41] Chandesris M, Médeau V, Guillet N, et al. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353‒1366.

[42] Gago A S, Ansar S A, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J]. Journal of Power Sources, 2016, 307: 815‒825.

[43] Price E. Durability and degradation issues in PEM electrolysis cells and its components [J]. Johnson Matthey Technology Review, 2017, 61(1): 47‒51.

[44] Alia S M, Stariha S, Borup R L. Electrolyzer durability at low catalyst loading and with dynamic operation [J]. Journal of the Electrochemical Society, 2019, 166(15): F1164‒F1172.

[45] Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. Journal of the Electrochemical Society, 2019, 166(8): F487‒F497.

[46] Siracusano S, Van Dijk N, Backhouse R, et al. Degradation issues of PEM electrolysis MEAs [J]. Renewable Energy, 2018, 123: 52‒57.

[47] Wang T Z, Cao X J, Jiao L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects [J]. Carbon Neutrality, 2022, 1(1): 21.

[48] Ayers K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes [J]. Current Opinion in Chemical Engineering, 2021, 33: 100719.

[49] Park J, Kang Z Y, Bender G, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers [J]. Journal of Power Sources, 2020, 479: 228819.

[50] Lickert T, Fischer S, Young J L, et al. Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware [J]. Applied Energy, 2023, 352: 121898.

[51] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析 [J]. 电工技术学报, 2022, 37(11): 2888‒2896.
Liu W, Wan Y M, Xiong Y L, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision [J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888‒2896.

[52] Yates J, Daiyan R, Patterson R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis [J]. Cell Reports Physical Science, 2020, 1(10): 100209.

[53] 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究 [J]. 中国工程科学, 2015, 17(3): 30‒34.
Yan Z Y, Kong X W. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications [J]. Strategic Study of CAE, 2015, 17(3): 30‒34.

Related Research