Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 1 doi: 10.15302/J-SSCAE-2024.07.001

Investigation and Application of Chemical Compound Flooding for Heavy Oil

1. SINOPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China;

2. SINOPEC Shengli Oilfield Company, Dongying 257015, Shandong, China;

3. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Funding project:国家重点研发计划项目 (2018YFA0702400) Received: 2023-07-10 Revised: 2023-12-08 Available online: 2024-01-24

Next Previous

Abstract

China has considerable heavy oil reserves, with 60% being deep heavy oil. However, the mainstream thermal recovery technologies, such as cyclic steam stimulation, have a recovery rate of less than 20%. The development potential of heavy oil resources is enormous, and actively exploring new development methods to improve the recovery rate is an inevitable choice for the high-quality development of the petroleum industry. This study focuses on the construction of a chemical compound flooding technology system for heavy oil and its field application, providing an effective solution for the development of green and low-cost sequential technologies for deep heavy oil. Based on the analysis of the components of heavy oil, this study elaborates on the structural viscous mechanism and the recovery improving mechanisms (i.e., chemical viscosity reduction, starting pressure gradient reduction, and oil displacement efficiency improvement mechanisms), which enriches the theoretical understanding. In response to urgent need of engineering applications, this study breaks through the green chemical flooding system for heavy oil from two aspects:the design and synthesis of water-soluble viscosity reducers and the development of self-assembling plugging agents. The developed chemical compound flooding technology for heavy oil has been successfully applied in three demonstration projects, achieving good results in increasing oil production and controlling water cut. Furthermore, this study outlines the key points for the subsequent development of molecular oil recovery theory and technology, as well as percolation theory and numerical simulation technology,
providing inspiration and reference for research on green and efficient development technologies for deep heavy oil and the promotion
of chemical compound flooding technology for heavy oil.

Figures

图1

图2

图3

图4

References

[ 1 ] 凡玉梅, 凡哲元, 余强‍‍. 基于开发技术的稠油油藏未动用储量分类评价 [J]‍. 石油地质与工程, 2023, 37(3): 63‒68‍.
Fan Y M, Fan Z Y, Yu Q‍. Classification and evaluation of undeveloped reserves in heavy oil reservoirs based on development technologies [J]‍. Petroleum Geology and Engineering, 2023, 37(3): 63‒68‍.

[ 2 ] 关文龙, 蒋有伟, 郭二鹏, 等‍. "双碳"目标背景下的稠油开发对策 [J]‍. 石油学报, 2023, 44(5): 826‒840‍.
Guan W L, Jiang Y W, Guo E P, et al‍. Heavy oil development strategy under the "carbon peaking and carbon neutrality" target [J]‍. Acta Petrolei Sinica, 2023, 44(5): 826‒840‍.

[ 3 ] 孙焕泉, 刘慧卿, 王海涛, 等‍. 中国稠油热采开发技术与发展方向 [J]‍. 石油学报, 2022, 43(11): 1664‒1674‍.
Sun H Q, Liu H Q, Wang H T, et al‍. Development technology and direction of thermal recovery of heavy oil in China [J]‍. Acta Petrolei Sinica, 2022, 43(11): 1664‒1674‍.

[ 4 ] 马锋, 张光亚, 王红军, 等‍. 全球重油与油砂资源潜力、分布与勘探方向 [J]‍. 吉林大学学报 (地球科学版), 2015, 45(4): 1042‒1051‍.
Ma F, Zhang G Y, Wang H J, et al‍. Potential, distribution and exploration trend of global heavy oil and oil sand resources [J]‍. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1042‒1051‍.

[ 5 ] 杨勇‍. 胜利油田稠油开发技术新进展及发展方向 [J]‍. 油气地质与采收率, 2021, 28(6): 1‒11‍.
Yang Y‍. New progress and next development directions of heavy oil development technologies in Shengli Oilfield [J]‍. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 1‒11‍.

[ 6 ] 崔传智, 郑文乾, 祝仰文, 等‍. 蒸汽吞吐后转降黏化学驱加密井井位优化方法 [J]‍. 石油学报, 2020, 41(12): 1643‒1648, 1656‍.
Cui C Z, Zheng W Q, Zhu Y W, et al‍. A method for optimizing the location of infill wells exploited by viscosity reduction chemical flooding after steam huff and puff stimulation [J]‍. Acta Petrolei Sinica, 2020, 41(12): 1643‒1648, 1656‍.

[ 7 ] Liu Z D, Wang H J, Blackbourn G, et al‍. Heavy oils and oil sands: Global distribution and resource assessment [J]‍. Acta Geologica Sinica, 2019, 93(1): 199‒212‍.

[ 8 ] 冯岸洲, 张贵才, 葛际江, 等‍. 表面活性剂体系改善稠油油藏注蒸汽开发效果研究进展 [J]‍. 油田化学, 2012, 29(1): 122‒127‍.
Feng A Z, Zhang G C, Ge J J, et al‍. Research progress of surfactant system improved steam stimulation effect of heavy oil [J]‍. Oilfield Chemistry, 2012, 29(1): 122‒127‍.

[ 9 ] 周英杰‍. 胜利油区水驱普通稠油油藏注蒸汽提高采收率研究与实践 [J]‍. 石油勘探与开发, 2006, 33(4): 479‒483‍.
Zhou Y J‍. Studies and practices on the steam injection EOR of water drived heavy oil reservoirs in Shengli petroliferous province [J]‍. Petroleum Exploration and Development, 2006, 33(4): 479‒483‍.

[10] 方吉超, 李晓琦, 计秉玉, 等‍. 中国稠油蒸汽吞吐后提高采收率接替技术前景 [J]‍. 断块油气田, 2022, 29(3): 378‒382, 389‍.
Fang J C, Li X Q, Ji B Y, et al‍. Prospect of replacement technology for enhanced oil recovery after cyclic steam stimulation of heavy oil in China [J]‍. Fault-Block Oil & Gas Field, 2022, 29(3): 378‒382, 389‍.

[11] 李锦超, 王磊, 丁保东, 等‍. 稠油热 / 化学驱油技术现状及发展趋势 [J]‍. 西安石油大学学报 (自然科学版), 2010, 25(4): 36‒40, 110‍.
Li J C, Wang L, Ding B D, et al‍. Present situation and development trend of the thermal/chemical flooding technology of heavy oil [J]‍. Journal of Xi´an Shiyou University (Natural Science Edition), 2010, 25(4): 36‒40, 110‍.

[12] Wilson A‍. Pelican lake: First successful application of polymer flooding in a heavy-oil reservoir [J]‍. Journal of Petroleum Technology, 2015, 67(1): 78‒80‍.

[13] 李广超‍. 国内油田三次采油提高采收率主体技术进展 (上) [J]‍. 油田化学, 2023, 40(1): 168‒174‍.
Li G C‍. Progress of main enhanced oil recovery technologies for oilfields in China (Ⅰ) [J]‍. Oilfield Chemistry, 2023, 40(1): 168‒174‍.

[14] 王成旗, 李一慧, 张金山, 等‍. 大庆油田化学驱提高采收率研究进展 [J]‍. 化学工程师, 2021, 35(6): 61‒64‍.
Wang C Q, Li Y H, Zhang J S, et al‍. Development of enhanced oil recoveryby chemical flooding in Daqing Oilfield [J]‍. Chemical Engineer, 2021, 35(6): 61‒64‍.

[15] 刘建锟‍. 沥青质分子结构研究进展 [J]‍. 炼油技术与工程, 2018, 48(9): 1‒4‍.
Liu J K‍. Progress of research on molecular structure of asphaltene [J]‍. Petroleum Refinery Engineering, 2018, 48(9): 1‒4‍.

[16] 袁梦龙, 申海平, 侯焕娣‍. 石油沥青质分子结构模型研究进展 [J]‍. 广东化工, 2020, 47(2): 91‒95‍.
Yuan M L, Shen H P, Hou H D‍. Research progress on the molecular structure model of asphaltene [J]‍. Guangdong Chemical Industry, 2020, 47(2): 91‒95‍.

[17] 李杰瑞, 刘卫东, 周义博, 等‍. 化学驱及乳化研究现状综述 [J]‍. 应用化工, 2018, 47(9): 1957‒1961‍.
Li J R, Liu W D, Zhou Y B, et al‍. Review on the current status of chemical flooding and emulsification [J]‍. Applied Chemical Industry, 2018, 47(9): 1957‒1961‍.

[18] 周亚洲, 杨文斌, 殷代印‍. 化学驱原油原位乳化及提高采收率机理研究进展 [J]‍. 油田化学, 2022, 39(4): 745‒752‍.
Zhou Y Z, Yang W B, Yin D Y‍. Progress of in-situ emulsification and enhanced oil recovery mechanism of chemical flooding [J]‍. Oilfield Chemistry, 2022, 39(4): 745‒752‍.

[19] 李柏林, 冯聪聪, 杨凤艳, 等‍. 原油乳状液稳定性影响因素 [J]‍. 化学工程师, 2013, 27(11): 41‒43‍.
Li B L, Feng C C, Yang F Y, et al‍. Influencing factors of crude oil emulsion stability [J]‍. Chemical Engineer, 2013, 27(11): 41‒43‍.

[20] 山金城, 李保振, 张延旭, 等‍. 海上油田化学驱技术研究与应用进展 [J]‍. 科技导报, 2020, 38(17): 127‒133‍.
Shan J C, Li B Z, Zhang Y X, et al‍. Review of the development and field application of worldwide offshore chemical eor technology [J]‍. Science & Technology Review, 2020, 38(17): 127‒133‍.

[21] 杜春晓, 耿志刚, 廖辉, 等‍. 渤海稠油油田开发技术国际对标研究 [J]‍. 当代化工, 2022, 51(8): 1984‒1990‍.
Du C X, Geng Z G, Liao H, et al‍. Research on international benchmarking of Bohai heavy oil field development technology [J]‍. Contemporary Chemical Industry, 2022, 51(8): 1984‒1990‍.

[22] Chen X, Zhang Y, Han J, et al‍. Direct nickel petroporphyrin analysis through electrochemical oxidation in electrospray ionization ultrahigh-resolution mass spectrometry [J]‍. Energy & Fuels, 2021, 35(7): 5748‒5757‍.

[23] Yen T F, Erdman J G, Pollack S S‍. Investigation of the structure of petroleum asphaltenes by X-ray diffraction [J]‍. Analytical Chemistry, 1961, 33: 1587‒1594‍.

[24] Mullins O C‍. The modified yen model [J]‍. Energy & Fuels, 2010, 24(4): 2179‒2207‍.

[25] 曹嫣镔, 刘冬青, 张仲平, 等‍. 胜利油田超稠油蒸汽驱汽窜控制技术 [J]‍. 石油勘探与开发, 2012, 39(6): 739‒743‍.
Cao Y B, Liu D Q, Zhang Z P, et al‍. Steam channeling control in the steam flooding of super heavy oil reservoirs, Shengli Oilfield [J]‍. Petroleum Exploration and Development, 2012, 39(6): 739‒743‍.

[26] 郑昕, 姚秀田, 夏海容, 等‍. 稠油化学堵调降黏复合驱油体系构建及驱油机理分析 [J]‍. 油气地质与采收率, 2021, 28(6): 122‒128‍.
Zheng X, Yao X T, Xia H R, et al‍. Establishment of combined viscosity reduction flooding system for chemical water shutoff and profile control in heavy oil reservoirs and analysis of its mechanism [J]‍. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 122‒128‍.

[27] 戴名扬, 吴玉国, 李小玲, 等‍. 耐温耐盐复配型降黏剂乳化降黏实验研究 [J]‍. 应用化工, 2018, 47(11): 2406‒2409‍.
Dai M Y, Wu Y G, Li X L, et al‍. Experimental research on emulsification and viscosity reduction of temperature and salt tolerance viscosity combination match compounds reducers [J]‍. Applied Chemical Industry, 2018, 47(11): 2406‒2409‍.

[28] 任亚青, 吴本芳‍. 耐盐耐高温超稠油降黏剂的研制与性能评价 [J]‍. 油田化学, 2020, 37(2): 318‒324‍.
Ren Y Q, Wu B F‍. Development and performance evaluation of super heavy oil viscosity reducer with heat resistance and salt tolerance [J]‍. Oilfield Chemistry, 2020, 37(2): 318‒324‍.

[29] 孙永涛, 李兆敏, 孙玉豹, 等‍. 稠油耐高温乳化降黏剂AESO的合成及其性能 [J]‍. 大庆石油地质与开发, 2021, 40(3): 103‒108‍.
Sun Y T, Li Z M, Sun Y B, et al‍. Synthesis and properties of high-temperature emulsified viscosity reducer AESO for heavy oil [J]‍. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 103‒108‍.

[30] Li P C, Zhang F S, Gong Y J, et al‍. Synthesis and properties of functional polymer for heavy oil viscosity reduction [J]‍. Journal of Molecular Liquids, 2021, 330: 115635‍.

[31] 郭娜, 李亮, 张潇, 等‍. 高分子乳化降粘剂的制备与性能评价 [J]‍. 应用化工, 2019, 48(10): 2308‒2311‍.
Guo N, Li L, Zhang X, et al‍. Preparation and performance evaluation of polymer emulsifying viscosity reducer [J]‍. Applied Chemical Industry, 2019, 48(10): 2308‒2311‍.

[32] 马超, 张明华, 张雄, 等‍. 双亲性聚合物稠油降黏剂的合成及降黏性能 [J]‍. 高分子材料科学与工程, 2020, 36(4): 61‒66‍.
Ma C, Zhang M H, Zhang X, et al‍. Synthesis and viscosity reduction properties of amphiphilic polymer heavy oil viscosity reducer [J]‍. Polymer Materials Science & Engineering, 2020, 36(4): 61‒66‍.

[33] 李汉勇, 高航, 秦守强, 等‍. 含水稠油在纳米 – 微波协同下的降黏实验研究 [J]‍. 西南石油大学学报 (自然科学版), 2020, 42(5): 179‒186‍.
Li H Y, Gao H, Qin S Q, et al‍. An experimental study on viscosity reduction of water-cut heavy oil under the synergistic action of nano catalyst and microwave [J]‍. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(5): 179‒186‍.

[34] 邢钰, 吴艳华, 郭继香, 等‍. 稠油致黏关键组分微观性质 [J]‍. 科学技术与工程, 2020, 20(5): 1833‒1838‍.
Xing Y, Wu Y H, Guo J X, et al‍. Microscopic properties of viscous key components in heavy crude oils [J]‍. Science Technology and Engineering, 2020, 20(5): 1833‒1838‍.

[35] 赵瑞玉, 展学成, 张超, 等‍. 特超稠油黏度的影响因素研究 [J]‍. 油田化学, 2016, 33(2): 319‒324‍.
Zhao R Y, Zhan X C, Zhang C, et al‍. Viscosity influence factors of super heavy crude oil [J]‍. Oilfield Chemistry, 2016, 33(2): 319‒324‍.

[36] 赵凯, 丁汝杰, 于欣‍. 稠油致黏因素研究现状 [J]‍. 广东化工, 2012, 39(12): 5‒6‍.
Zhao K, Ding R J, Yu X‍. Research advance of the heavy oil viscosity factors [J]‍. Guangdong Chemical Industry, 2012, 39(12): 5‒6‍.

[37] 王晨辉, 徐基鹏, 张厚君, 等‍. 稠油降黏机理及降黏剂合成方法的研究进展 [J]‍. 化学工业与工程, 2022, 39(3): 1‒17‍.
Wang C H, Xu J P, Zhang H J, et al‍. Research progress on viscosity reduction mechanism of heavy oil and synthetic method of viscosity reducer [J]‍. Chemical Industry and Engineering, 2022, 39(3): 1‒17‍.

[38] 王艳萍, 孙风跃, 梁心怡, 等‍. 耐温耐盐乳化降黏剂的结构设计及其构效关系 [J]‍. 精细化工, 2020, 37(4): 826‒833‍.
Wang Y P, Sun F Y, Liang X Y, et al‍. Structure design and structure‍‒‍function relationship of emulsified viscosity reducers with temperature resistance and salt tolerance [J]‍. Fine Chemicals, 2020, 37(4): 826‒833‍.

Related Research