Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2013, Volume 15, Issue 3

Research on physical-chemical and biochemical combined technology in the treatment of refractory petrochemical dry-spun acrylic fiber wastewater

1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;

2. Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;

3. College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China

Funding project:国家科技重大水专项课题(2008ZX07208-003);国际科技合作项目(2010DFB90590) Received: 2012-12-12 Available online: 2013-03-15 14:18:31.000

Next Previous

Abstract

The lab-scale and pilot-scale physical-chemical and biochemical combined technology tests were carried out for the treatment of refractory petrochemical dry-spun acrylic fiber wastewater in Liaohe River, in which the multi-compartment anoxic/oxic membrane bioreactor (A/O MBR) and multi-technology coordinated catalyzed ozone oxidation were used as core unit process. The results showed that the removal performance could be improved significantly by reasonable coupling of physical-chemical and biochemical technologies in the treatment of acrylic fiber wastewater, the COD, ammonium and total nitrogen removal efficiency in combined process of MBR, ozone oxidation and biological aerated filter(BAF) could reach 90 %, 95 % and 80 %, respectively, and their concentration of effluent were below 100 mg/L, 5 mg/L and 35 mg/L. In addition, due to the lack of biodegradable organic carbon source and the refractory of acrylonitrile oligomers and nitrogen-containing heterocyclic organic matter in dry-spun acrylic fiber wastewater, the ammoniation steps which converted organic nitrogen to inorganic ammonium had limited the total nitrogen removal effect of overall process.

Figures

图1

图2

图3

图4

图5

图6

图7

图8

References

[ 1 ] 金离尘. 选择合适的工艺路线发展我国腈纶[J]. 合成纤维工 业,2004,27(6):42-45. link1

[ 2 ] 高敏惠.我国腈纶工业的发展前景[J]. 合成纤维工业,2001,24 (1):6-8. link1

[ 3 ] 任玲子,瞿国华. 腈纶工业前景展望[J]. 合成纤维,2001,30 (1):11-15. link1

[ 4 ] 张丽新. 干法腈纶废水处理技术研究及应用[D]. 天津:天津大 学,2007. link1

[ 5 ] 杨晓奕,师绍琪,蒋展鹏,等. 混凝-两相厌氧-缺氧-好氧工艺 处理腈纶废水的研究[J]. 给水排水,2001,27(6):40-45. link1

[ 6 ] 汪宏渭,孙在柏,孙国华. 干法腈纶废水处理技术[J]. 化工环 保,2005,25(2):128-131. link1

[ 7 ] 赵朝成,王志伟. 臭氧氧化法处理腈纶废水研究[J]. 化工环保, 2004,24:56-59. link1

[ 8 ] Lin H J,Xie K,Mahendran B,et al. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors(SAnMBRs)[J]. Water Research,2009,43(15): 3827-3837. link1

[ 9 ] Akino Hitomi. Swim- bed technology as an innovative attached growth process in the wastewater treatment[C]. The research conference of west Japan Society of Civil Engineers,2004.

[10] 李艳华,杨凤林,张捍民,等. 内电解-Fenton氧化-膜生物反 应器处理腈纶废水[J]. 中国环境科学,2009,28(3):220-224. link1

[11] 明爱玲,赵朝成. 干法腈纶废水混凝处理研究[J]. 环境污染与 防治,2010,32(7):62-65. link1

[12] 张丙华,耿春香,赵朝成,等. 腈纶废水的光催化氧化技术研 究[J]. 科学技术与工程,2008,8(6):1518-1521. link1

[13] 国家环境保护总局. 关于发布《污水综合排放标准》(GB 8978—1996)中石化工业 COD 标准值修改单的通知(环发 [1999]285号)[EB/OL].http://www.zhb.gov.cn/gkml/zj/wj/200910/ t20091022_171959.htm.

[14] 辽宁省质量监督局,辽宁省环境保护局.DB 21/1627—2008. 辽宁省污水排放综合标准[S].

[15] 国家环保总局. 水和废水监测方法[M]. 北京:中国环境科学出 版社,2002.

[16] Cleder A S,Edésio L S,Sávio L B,et al. Use of ozone in a pilot- scale plant for textile wastewater pre- treatment:Physicochemical efficiency,degradation by products identification and environmental toxicity of treated wastewater[J]. Journal of Hazardous Materials,2010,175(1-3):235-240. link1

[17] Eric C W,Fernando L R,Shane A S. Effect of ozone exposure on the oxidaiton of trace organic contaminants in wastewater[J]. Water Research,2009,43(4):1005-1014. link1

[18] Eric C W,Sarah G,Mei M D,et al. Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater[J]. Water Research,2011,45(16):5191-5199. link1

Related Research