资源类型

期刊论文 39

年份

2023 4

2022 2

2021 3

2020 3

2019 5

2018 1

2017 4

2016 4

2015 1

2014 2

2012 4

2011 1

2009 1

2008 1

2007 2

2001 1

展开 ︾

关键词

制备方法 1

即时医疗 1

含能材料 1

循环肿瘤细胞 1

性能预测 1

智能凝胶 1

智能线性高分子 1

智能高分子膜 1

机器学习 1

材料基因组方法 1

热键合 1

理性设计 1

相转化法 1

纳米复合材料 1

聚合氮 1

聚合物 1

芯片实验室 1

超高压 1

金属氢 1

展开 ︾

检索范围:

排序: 展示方式:

Biosorption of Cu(II) to extracellular polymeric substances (EPS) from

Xiangliang PAN, Jing LIU, Wenjuan SONG, Daoyong ZHANG

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 493-497 doi: 10.1007/s11783-012-0416-9

摘要: Biosorption of extracellular polymeric substances (EPS) from sp. (cyanobacterium) with Cu(II) was investigated using fluorescence spectroscopy. Three fluorescence peaks were found in the excitation-emission matrix (EEM) fluorescence spectra of EPS. Fluorescence of peak A (Ex/Em= 275/452 nm) and peak C (Ex/Em= 350/452 nm) were originated from humic-like substances and fluorescence of peak B (Ex/Em= 275/338 nm) was attributed to protein-like substances. Fluorescence of peaks A, B, and C could be quenched by Cu(II). The effective quenching constants (lg K ) were 2.8–5.84 for peak A, 6.4–9.24 for peak B, and 3.48–6.68 for peak C, respectively. The values of lg K showed a decreasing trend with increasing temperature, indicating that the quenching processes were static in nature. The binding constants (lg K ) followed the order of peak A>peak B>peak C, implying that the humic-like substances in EPS have greater Cu(II) binding capacity than the protein-like substances. The binding site number, , in EPS-Cu(II) complexes for peaks A, B, and C was less than 1. This suggests the negative cooperativity between multiple binding sites and the presence of more than one Cu binding site.

关键词: biosorption     conditional binding constant     extracellular polymeric substances (EPS)     fluorescence quenching    

Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1450-2

摘要:

• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory.

关键词: Silver nanoparticles     Silver sulfide nanoparticles     Extracellular polymeric substances     Aggregation kinetics     Influence mechanisms    

Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater

Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1103-x

摘要:

CNT-PVA membrane was fabricated and compared with polymeric membranes.

The separation performance was evaluated by homemade and cutting fluid emulsions.

The three membranes show similar oil retention rates.

CNT-PVA membranes have higher permeation fluxes compared with polymeric membranes.

CNT-PVA membrane shows higher fouling resistance.

关键词: Oily wastewater     Microfiltration     Carbon nanotube membrane     Commercial polymeric membrane    

Synthesis and characterization of castor oil-based polymeric surfactants

Xujuan HUANG,He LIU,Shibin SHANG,Zhaosheng CAI,Jie SONG,Zhanqian SONG

《农业科学与工程前沿(英文)》 2016年 第3卷 第1期   页码 46-54 doi: 10.15302/J-FASE-2016083

摘要: Dehydrated castor oil was epoxidized using phosphoric acid as a catalyst and acetic acid peroxide as an oxidant to produce epoxidized castor oil (ECO). Ring-opening polymerization with stannic chloride was used to produce polymerized ECO (PECO), and sodium hydroxide used to give hydrolyzed PECO (HPECO). The HPECO was characterized by Fourier transform infrared, H and C nuclear magnetic resonance spectroscopies, gel permeation chromatography, and differential scanning calorimetry. The weight-average molecular weight of soluble PECO and HPECO were 5026 and 2274 g·mol , respectively. PECO and HPECO exhibited glass transition. Through neutralizing the carboxylic acid of HPECO with different counterions, castor oil-based polymeric surfactants (HPECO-M, where M= Na , K or triethanolamine ion) exhibited high efficiency to reduce the surface tension of water. The critical micelle concentration (CMC) values of HPECO-M ranged from 0.042 to 0.098 g·L and the minimum equilibrium surface tensions at CMC ( ) of HPECO-M ranged from 25.6 to 30.0 mN·m . The water-hexadecane interfacial energy was calculated from measured surface tension using harmonic and geometric mean methods. Measured values of water-hexadecane interfacial tension agreed well with those calculated using the harmonic and geometric mean methods.

关键词: epoxidized vegetable oil     ring-opening polymerization     interfacial tension     polymeric surfactant    

The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent

Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 482-490 doi: 10.1007/s11783-015-0826-6

摘要: Adsorption isotherms of methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and ethyl propionate on hypercrosslinked polymeric resin (ND-100) were measured at 303K, 318K and 333K,respectively, and well fitted by Dubinin–Astakhov (DA) equation. The plots of the adsorbed volume ( ) versus the adsorption potential ( ) at three different temperatures all fell basically onto one single curve for every ester. A predicted model based on DA equation was obtained on the basis of adsorption equilibrium data of methyl acetate, ethyl acetate and ethyl propionate at 318K. The model equation successfully predicted the adsorption isotherms of methyl acetate, ethyl acetate and ethyl propionate on ND-100 at 303K, and 333K, and also gave accurate predictive results for adsorption isotherms of the other two ester compounds (propyl acetate and isopropyl acetate) on ND-100 at 303K, 318K and 333K. The results proved the effectiveness of DA model for predicting the adsorption isotherms of ester compounds onto ND-100. In addition, the relationship between physico-chemical properties of adsorbates and their adsorption properties was also investigated. The results showed that molecular weight, molar volume and molar polarizability had good linear correlations with the parameter (which represents adsorption characteristic energy) of DA equation.

关键词: hypercrosslinked polymeric adsorbent     adsorption isotherm     ester     prediction    

Adsorption selectivity of salicylic acid and 5-sulfosalicylic acid onto hypercrosslinked polymeric adsorbents

LIU Fuqiang, CHEN Jinlong, LI Aimin, XIA Mingfang, FEI Zhenghao

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 73-78 doi: 10.1007/s11783-007-0014-4

摘要: Both bottle-point and column-feeding experiments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic acid. Their adsorption isotherms onto such hypercrosslinked polymeric adsorbents as NDA-100 and NDA-99 could be well described by the Freundlich equations whose characteristics describe extrathermic and favorable adsorption processes. The adsorption towards NDA-100 mainly depended on the π-π interaction, while that towards NDA-99 was extremely influenced by the static-electric interaction. Additionally, the adsorptive capacity of salicylic acid on NDA-99 decreased while it increased on NDA-100 with the presence of 5-sulfosalicylic acid in the adsorptive environment as the competitive component. Comparatively, the adsorption capacity of 5-sulfosalicylic acid decreased on both resins with salicylic acid as the competitive component. In fact, the difference in the interaction between adsorbent and adsorbate resulted in the straight antagonism on the effective adsorption sites on the adsorbent. In conclusion, the adsorption selectivity of salicylic acid onto NDA-100 was obviously larger than that onto NDA-99 with the existence of 5-sulfosalicylic acid in the adsorptive environment. A satisfactory separation and recovery of tested solutes in aqueous phase could be foreseeably achieved by the sequencing adsorption technique involving NDA-100 as well as NDA-99.

关键词: 5-sulfosalicylic     bottle-point     hypercrosslinked polymeric     satisfactory separation     NDA-100    

Adsorption of 1,3-propanediol from synthetic mixture using polymeric resin as adsorbents

W. LUERRUK, A. SHOTIPRUK, V. TANTAYAKOM, P. PRASITCHOKE, C. MUANGNAPOH

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 52-57 doi: 10.1007/s11705-009-0087-7

摘要: The aim of this work was to separate 1,3-PDO from a synthetic mixture using polymeric resins, Amberlite XAD-7 and XAD-16 resins. The equilibrium adsorption of 1,3-PDO onto two polymeric resins were investigated in binary and tertiary systems. Experimental results of binary component adsorption equilibrium indicated that the adsorption capacity ( ) of 1,3-PDO at 160 g/L onto XAD-7 and XAD-16 was 835.96 and 584.61 mg 1,3-PDO/g dry resin, respectively. The adsorption isotherms were closely predicted by the Langmuir-Freundlich model among the two isotherm model tested. The value of n of 1,3-PDO adsorbed on XAD-7 are much higher than those on XAD-16. This result suggested that XAD-7 resin has a higher affinity for the 1,3-PDO adsorption than XAD-16 resin. Moreover, the value of adsorption capacity of 1,3-PDO in the binary and tertiary component were compared at the same conditions. In the tertiary system, although the selectivity of 1,3-PDO from XAD-7 was approximately six times higher than XAD-16, the adsorption capacity of 1,3-PDO at 160 g/L onto XAD-16 was higher than XAD-7. Interestingly, the reusability of XAD-7 and XAD-16 resins in the three cycle times shows a slight loss of adsorption capacity. Furthermore, the investigation about desorption by an ethanol/water mixture at 50% ( / ) indicated that the desorption yield of 1,3-PDO from XAD-7 was lower than XAD-16 resin for both the binary and tertiary component. This was due to the more favorable adsorption characteristics of XAD-7 resin than XAD-16 resin.

关键词: adsorption     1     3-propanediol     glycerol     polymeric resin     adsorption isotherm    

Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1707-z

摘要:

● EPS immobilizes U(VI) via adsorption, bioreduction and desorption.

关键词: Adsorption     Bioreduction     Desorption     Kinetics     Isotherm     Uranium    

Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals

Tahereh R. BASTAMI,Mohammad H. ENTEZARI,Chiwai KWONG,Shizhang QIAO

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 378-385 doi: 10.1007/s11705-014-1441-y

摘要: Two types of polymeric surfactants, PEG and PVP , were used for the preparation of magnetic ferrite MFe O (M= Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type effect on the size evolution of various nanoparticles was investigated. It was found that Fe O nanoparticles exhibited higher crystalinity and size evolution than MnFe O nanoparticles with use of the two surfactants. It is proposed that this observation is due to fewer tendencies of surfactants on the surface of Fe O building blocks nanoparticles than MnFe O . Less amounts of surfactant or capping agent on the surface of nanoparticles lead to the higher crystalibity and larger size. It is also suggested that the type of spinel (normal or inverted spinel) plays a key role on the affinity of the polymeric surfactant on the surface of building blocks.

关键词: spinel type     polymeric surfactant     size evolution     mangnetic ferrite nanoparticle    

Formation of microporous polymeric membranes via thermally induced phase separation: A review

Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 57-75 doi: 10.1007/s11705-016-1561-7

摘要: A review of recent research related to microporous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.

关键词: polymer     microporous membrane     thermally induced phase separation    

Preparation and sedimentation behavior of conductive polymeric nanoparticles

WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 231-235 doi: 10.1007/s11705-008-0055-7

摘要: A facile route to prepare FeO/polypyrrole (PPY) core-shell magnetic nanoparticles was developed. FeO nanoparticles were first prepared by a chemical co-precipitation method, and then FeO/PPY core-shell magnetic composite nanoparticles were prepared by in-situ polymerization of pyrrole in the presence of FeO nanoparticles. The obtained nanoparticles were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and laser particle size analyzer. The images indicate that the size of FeO particles is about 10 nanometers, and the particles are completely covered by PPY. The FeO/PPY core-shell magnetic composite nanoparticles are about 100 nanometers and there are several FeO particles in one composite nanoparticle. The yield of the composite nanoparticles was about 50%. The sedimentation behavior of FeO/PPY core-shell magnetic nanoparticles in electrolyte and soluble polymer solutions was characterized. The experimental results indicate that the sedimentation of particles can be controlled by adjusting electrolyte concentration, solvable polymers and by applying a foreign field. This result is useful in preparing gradient materials and improving the stability of suspensions.

Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview

Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 405-413 doi: 10.1007/s11705-017-1615-5

摘要: The possibility to evaluate in a predictive way the relevant transport properties of low molecular weight species, both gases and vapors, in glassy polymeric membranes is inspected in detail, with particular attention to the methods recently developed based on solid thermodynamic basis. The solubility of pure and mixed gases, diffusivity and permeability of single gases in polymer glasses are examined, considering in particular poly(2,6-dimethyl-1,4-phenylene oxide) as a relevant test case. The procedure clearly indicates what are the relevant physical properties of the polymer matrix and of the penetrants required by the calculations, which can be obtained experimentally through independent measurements. For gas and vapor solubility, the comparison with direct experimental data for mixed gases points out also the ability to account for the significant variations that solubility-selectivity experiences upon variations of pressure and/or feed composition. For gas and vapor permeability, the comparison with direct experimental data shows the possibility to account for the various different trends observed experimentally as penetrant pressure is increased, including the so-called plasticization behavior. The procedure followed for permeability calculations leads also to clear correlations between permeability and physical properties of both polymer and penetrant, based on which pure predictive calculations are reliably made.

关键词: solubility     permeability     glassy polymers     NELF model     diffusion    

Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing

Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 319-327 doi: 10.1007/s11465-019-0549-7

摘要: Lattice structures have numerous outstanding characteristics, such as light weight, high strength, excellent shock resistance, and highly efficient heat dissipation. In this work, by combining experimental and numerical methods, we investigate the compressive behavior and energy absorption of lattices made through the stereolithography apparatus process. Four types of lattice structures are considered: (i) Uniform body-centered-cubic (U-BCC); (ii) graded body-centered-cubic (G-BCC); (iii) uniform body-centered-cubic with -axis reinforcement (U-BCCz); and (iv) graded body-centered-cubic with -axis reinforcement (G-BCCz). We conduct compressive tests on these four lattices and numerically simulate the compression process through the finite element method. Analysis results show that BCCz has higher modulus and strength than BCC. In addition, uniform lattices show better energy absorption capabilities at small compression distances, while graded lattices absorb more energy at large compression distances. The good correlation between the simulation results and the experimental phenomena demonstrates the validity and accuracy of the present investigation method.

关键词: lattice structure     polymer     compressive behavior     additive manufacturing     simulation    

A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication

Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 475-484 doi: 10.1007/s11705-019-1809-0

摘要: In this work, we present plasma etching alone as a directed assembly method to both create the nanodot pattern on an etched polymeric (PMMA) film and transfer it to a silicon substrate for the fabrication of silicon nanopillars or cone-like nanostructuring. By using a shield to control sputtering from inside the plasma reactor, the size and shape of the resulting nanodots can be better controlled by varying plasma parameters as the bias power. The effect of the shield on inhibitor deposition on the etched surfaces was investigated by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measurements. The fabrication of quasi-ordered PMMA nanodots of a diameter of 25 nm and period of 54 nm is demonstrated. Pattern transfer to the silicon substrate using the same plasma reactor was performed in two ways: (a) a mixed fluorine-fluorocarbon-oxygen nanoscale etch plasma process was employed to fabricate silicon nanopillars with a diameter of 25 nm and an aspect ratio of 5.6, which show the same periodicity as the nanodot pattern, and (b) high etch rate cryogenic plasma process was used for pattern transfer. The result is the nanostructuring of Si by high aspect ratio nanotip or nanocone-like features that show excellent antireflective properties.

关键词: plasma     nanoassembly     etching     nanodots     nanopillars     nanofabrication    

Polymeric nanocomposites for electrocaloric refrigeration

《能源前沿(英文)》 2023年 第17卷 第4期   页码 450-462 doi: 10.1007/s11708-022-0858-0

摘要: Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential, highly efficient refrigeration, and heat pumps. To date, both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices. Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones, they still pose many challenges to more practical applications. From an electrocaloric material point of view, electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials. This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites. From a device point of view, it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.

关键词: nanocomposites     electrocaloric     refrigeration     polymer    

标题 作者 时间 类型 操作

Biosorption of Cu(II) to extracellular polymeric substances (EPS) from

Xiangliang PAN, Jing LIU, Wenjuan SONG, Daoyong ZHANG

期刊论文

Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of

期刊论文

Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater

Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu

期刊论文

Synthesis and characterization of castor oil-based polymeric surfactants

Xujuan HUANG,He LIU,Shibin SHANG,Zhaosheng CAI,Jie SONG,Zhanqian SONG

期刊论文

The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent

Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG

期刊论文

Adsorption selectivity of salicylic acid and 5-sulfosalicylic acid onto hypercrosslinked polymeric adsorbents

LIU Fuqiang, CHEN Jinlong, LI Aimin, XIA Mingfang, FEI Zhenghao

期刊论文

Adsorption of 1,3-propanediol from synthetic mixture using polymeric resin as adsorbents

W. LUERRUK, A. SHOTIPRUK, V. TANTAYAKOM, P. PRASITCHOKE, C. MUANGNAPOH

期刊论文

Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric

期刊论文

Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals

Tahereh R. BASTAMI,Mohammad H. ENTEZARI,Chiwai KWONG,Shizhang QIAO

期刊论文

Formation of microporous polymeric membranes via thermally induced phase separation: A review

Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang

期刊论文

Preparation and sedimentation behavior of conductive polymeric nanoparticles

WANG Jixiao, LIU Rui, ZHANG Xiaoyan, ZHOU Zhibin, WANG Zhi, WANG Shichang

期刊论文

Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview

Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti

期刊论文

Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing

Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU

期刊论文

A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication

Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides

期刊论文

Polymeric nanocomposites for electrocaloric refrigeration

期刊论文