资源类型

期刊论文 366

会议视频 5

年份

2024 13

2023 37

2022 31

2021 31

2020 32

2019 17

2018 25

2017 23

2016 19

2015 11

2014 16

2013 14

2012 9

2011 11

2010 9

2009 15

2008 14

2007 15

2006 5

2005 5

展开 ︾

关键词

乳液 2

内禀尺度 2

双层辉光离子渗金属 2

地球物理 2

无氢渗碳 2

细水雾 2

&alpha 1

6G 1

6G;智能超表面;级联信道解耦;RIS调控约束;RIS系统架构;真时延 1

CO2/N2刺激响应 1

GDM过滤技术 1

GPS数据 1

GPS浮标 1

PB-PSOI 1

PVA/SiO2 1

Pickering乳液 1

Stavax钢 1

“彩虹”捕获 1

一维材料 1

展开 ︾

检索范围:

排序: 展示方式:

Predictive model to decouple the contributions of friction and plastic deformation to machined surfacetemperatures and residual stress patterns in finish dry cutting

Subhash ANURAG, Yuebin GUO,

《机械工程前沿(英文)》 2010年 第5卷 第3期   页码 247-255 doi: 10.1007/s11465-010-0097-7

摘要: Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement. Furthermore, the individual contribution of tool/work friction and plastic deformation of work materials to surface temperature is very difficult to quantify because the measured temperature is always the resultant temperature. This lack of understanding on the temperature distribution blocks the design of effective cutting tool geometries and materials to minimize surface temperature. This study provides a finite element method based on a predictive model to decouple the contributions of tool/work friction and material plastic deformation to surface temperature in a dry cutting process. The study shows that the plastic deformation of work material contributes to the majority of surface temperature, whereas the tool/work friction contribution is secondary. High temperatures are produced when more materials are plowed under the cutting edge. A large tool/work friction leads to higher surface temperatures, and the use of a cutting tool with physical properties in process simulation significantly improves the accuracy of predicted surface temperatures. Residual stress reversal from subsurface maximum residual to surface maximum residual stress may occur when tool/work friction increases.

关键词: surface temperature     friction     residual stress     finite element analysis (FEA)     dry cutting     tool property    

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 410-416 doi: 10.1007/s11465-012-0341-4

摘要:

Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

关键词: tool vibration     magneto rheological damper     hard turning     surface finish     tool wear    

Cell surface protein engineering for high-performance whole-cell catalysts

Hajime Nakatani,Katsutoshi Hori

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 46-57 doi: 10.1007/s11705-017-1609-3

摘要: Cell surface protein engineering facilitated by accumulation of information on genome and protein structure involves heterologous production and modification of cell surface proteins using genetic engineering, and is important for the development of high-performance whole-cell catalysts. In this field, cell surface display is a major technology by exposing target proteins, such as enzymes, on the cell surface using a carrier protein. The target proteins are fused to the carrier proteins that transport and tether them to the cell surface, as well as to a secretion signal. This paper reviews cell surface display systems for prokaryotic and eukaryotic cells from the perspective of carrier proteins, which determine the number of displayed molecules, and the localization, size, and direction ( or terminal anchoring) of the passengers. We also discuss advanced methods for displaying multiple enzymes and a new method for the immobilization of whole-cell catalysts using adhesive surface proteins.

关键词: cell surface engineering     surface display     whole-cell catalysts     bioprocess    

An Exploration of Surface Integrity Remanufacturing for Aeroengine Components

Qiao Xiang,Yong He,Ting-hong Hou

《工程管理前沿(英文)》 2016年 第3卷 第2期   页码 107-114 doi: 10.15302/J-FEM-2016025

摘要: Surface integrity is the major factor impacting on the operation quality, service life and reliability of the aeroengine components. The surface integrity of aeroengine component is damaged by the failures such as crack, deformation, oxidation, corrosion, erosion, and microstructural degeneration. It adopts advanced remanufacturing technologies to restore or improve the surface integrity and regenerate these high value parts. This paper firstly puts forward the concept, namely surface integrity remanufacturing for aeroengine components, and its connotation. The key remanufacturing technologies have been developed to repair the components with surface damages. Ultimately, some application examples of surface integrity remanufacturing technologies as well as their effects in aeroengine maintenance are introduced. The discarded components have been reused and their service lives have been extended and their reliability has been increased by implementing surface integrity remanufacturing. It has realized “The Repaired Components Outpacing the New Ones”, material saving, energy saving, and emission reduction.

关键词: aeroengine component     surface integrity     remanufacturing     surface integrity remanufacturing    

Tribological study on the surface modification of metal-on-polymer bioimplants

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0682-6

摘要: The tribological performance of artificial joints is regarded as the main factor of the lifespan of implanted prostheses. The relationship between surface roughness and coefficient of friction (COF) under dry and lubricated conditions is studied. Results show that under dry test, friction coefficient is not reduced all the time with a decrease in surface roughness. On the contrary, a threshold of roughness value is observed, and frictional force increases again below this value. This critical value lies between 40 and 100 nm in Sa (roughness). This phenomenon is due to the transfer of friction mechanisms from abrasion to adhesion. Under wet test, COF always decreases with reduction in surface roughness. This result is mainly attributed to the existence of a thin layer of lubricant film that prevents the intimate contact of two articulating surfaces, thus greatly alleviating adhesion friction. Furthermore, surface texturing technology is successful in improving the corresponding tribological performance by decreasing friction force and mitigating surface deterioration. The even-distribution mode of texturing patterns is most suitable for artificial joints. By obtaining the optimal surface roughness and applying texturing technology, the tribological performance of polymer-based bioimplants can be greatly enhanced.

关键词: artificial joints     surface roughness     friction     surface texturing    

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 299-319 doi: 10.1007/s11465-019-0535-0

摘要: Laser polishing is a technology of smoothening the surface of various materials with highly intense laser beams. When these beams impact on the material surface to be polished, the surface starts to be melted due to the high temperature. The melted material is then relocated from the ‘peaks to valleys’ under the multidirectional action of surface tension. By varying the process parameters such as beam intensity, energy density, spot diameter, and feed rate, different rates of surface roughness can be achieved. High precision polishing of surfaces can be done using laser process. Currently, laser polishing has extended its applications from photonics to molds as well as bio-medical sectors. Conventional polishing techniques have many drawbacks such as less capability of polishing freeform surfaces, environmental pollution, long processing time, and health hazards for the operators. Laser polishing on the other hand eliminates all the mentioned drawbacks and comes as a promising technology that can be relied for smoothening of initial topography of the surfaces irrespective of the complexity of the surface. Majority of the researchers performed laser polishing on materials such as steel, titanium, and its alloys because of its low cost and reliability. This article gives a detailed overview of the laser polishing mechanism by explaining various process parameters briefly to get a better understanding about the entire polishing process. The advantages and applications are also explained clearly to have a good knowledge about the importance of laser polishing in the future.

关键词: laser polishing     surface roughness     process parameters     mechanism    

Development of surface reconstruction algorithms for optical interferometric measurement

Dongxu WU, Fengzhou FANG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 1-31 doi: 10.1007/s11465-020-0602-6

摘要: Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.

关键词: surface topography     measurement     optical interferometry     coherence envelope     phase-shifting algorithm    

Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 221-236 doi: 10.1007/s11705-021-2061-y

摘要: To study the dynamic behavior of a process, time-resolved data are collected at different time instants during each of a series of experiments, which are usually designed with the design of experiments or the design of dynamic experiments methodologies. For utilizing such time-resolved data to model the dynamic behavior, dynamic response surface methodology (DRSM), a data-driven modeling method, has been proposed. Two approaches can be adopted in the estimation of the model parameters: stepwise regression, used in several of previous publications, and Lasso regression, which is newly incorporated in this paper for the estimation of DRSM models. Here, we show that both approaches yield similarly accurate models, while the computational time of Lasso is on average two magnitude smaller. Two case studies are performed to show the advantages of the proposed method. In the first case study, where the concentrations of different species are modeled directly, DRSM method provides more accurate models compared to the models in the literature. The second case study, where the reaction extents are modeled instead of the species concentrations, illustrates the versatility of the DRSM methodology. Therefore, DRSM with Lasso regression can provide faster and more accurate data-driven models for a variety of organic synthesis datasets.

关键词: data-driven modeling     pharmaceutical organic synthesis     Lasso regression     dynamic response surface methodology    

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 606-624 doi: 10.1007/s11709-023-0925-6

摘要: A novel cambered surface steel tube damper (CSTD) with a cambered surface steel tube and two concave connecting plates is proposed herein. The steel tube is the main energy dissipation component and comprises a weakened segment in the middle, a transition segment, and an embedded segment. It is believed that during an earthquake, the middle weakened segment of the CSTD will be damaged, whereas the reliability of the end connection is ensured. Theoretical and experimental studies are conducted to verify the effectiveness of the proposed CSTD. Formulas for the initial stiffness and yield force of the CSTD are proposed. Subsequently, two CSTD specimens with different steel tube thicknesses are fabricated and tested under cyclic quasi-static loads. The result shows that the CSTD yields a stable hysteretic response and affords excellent energy dissipation. A parametric study is conducted to investigate the effects of the steel tube height, diameter, and thickness on the seismic performance of the CSTD. Compared with equal-stiffness design steel tube dampers, the CSTD exhibits better energy dissipation performance, more stable hysteretic response, and better uniformity in plastic deformation distributions.

关键词: cambered surface steel tube damper     energy dissipation capacity     finite element model     hysteretic performance     parametric study    

Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent

Huan GU, Dacheng REN

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 20-33 doi: 10.1007/s11705-014-1412-3

摘要: Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.

关键词: surface engineering     materials     bacterial adhesion     biofilm     control     review    

Fractal characteristic evaluation and interpolation reconstruction for surface topography of drilled

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 840-854 doi: 10.1007/s11465-021-0643-5

摘要: In this paper, an improved fractal interpolation model is proposed to reconstruct the surface topography of composite hole wall. This model adopts the maximum positive deviations and maximum negative deviations between the measured values and trend values to determine the contraction factors. Hole profiles in 24 directions are measured. Fractal parameters are calculated to evaluate the measured surface profiles. The maximum and minimum fractal dimension of the hole wall are 1.36 and 1.07, whereas the maximum and minimum fractal roughness are 4.05 × 10 −5 and 4.36 × 10 −10 m, respectively. Based on the two-dimensional evaluation results, three-dimensional surface topographies in five typical angles (0°, 45°, 90°, 135°, and 165°) are reconstructed using the improved model. Fractal parameter D s and statistical parameters Sa, Sq, and Sz are used to evaluate the reconstructed surfaces. Average error of D s, Sa, Sq, and Sz between the measured surfaces and the reconstructed surfaces are 1.53%, 3.60%, 5.60%, and 9.47%, respectively. Compared with the model in published literature, the proposed model has equal reconstruction effect in relatively smooth surface and is more advanced in relatively rough surface. Comparative results prove that the proposed model for calculating contraction factors is more reasonable.

关键词: surface topography     fractal evaluation     fractal interpolation     reconstruction     composite    

Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored

Shuai Liang, Peng Gao, Xiaoqi Gao, Kang Xiao, Xia Huang

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0875-5

摘要: Two types of amphiphilic nanoparticles were prepared via silanization reaction. Amphiphilic nanoparticles tend to protrude from membrane matrix by segregation. Blending with amphiphilic nanoparticles further enhances membrane hydrophilicity. Excessive silanization cause adverse effect on blending efficiency. Membrane modification is one of the most feasible and effective solutions to membrane fouling problem which tenaciously hampered the further augmentation of membrane separation technology. Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane production lines, possesses an advantageous viability in practical applications. However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO as pristine NPs (pNPs), respectively. The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed the presence of appropriate organic components in both the ZnO and SiO aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattering on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO types.

关键词: Membrane modification     Nanoparticle     Hydrophilic     Amphiphilic     Blending    

Dynamic visco-plastic memorial nested yield surface model of soil

ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 49-55 doi: 10.1007/s11709-008-0003-0

摘要: Under cyclic loadings, the plastic strain of soft soil will take place under very small shear strain. So the visco-plastic model is appropriate to be used to model the dynamic characteristics of soft soil. Based on the principles of geotechnical plastic mechanics, the incremental visco-plastic memorial nested yield surface model is developed by using the field theory of nonlinear isotropic materials and the theory of kinematical hardening modulus. At the end of anyone time increment, the inverted loading surface, the damaged surface and the initial loading surface which is tangent with the inside of inverted loading surface are memorized respectively. The kinematical behavior of yield surface is defined by using these three surfaces. The developed model in this paper is successfully implemented in ABAQUS using FORTRAN subroutine. The predicted stress-strain relationships of soft soil are compared with the test results given by dynamic triaxial tests. It is proved that the cyclic undrained stress-strain relation of soils can be fairly simulated by the model. At last, the nonlinear earthquake response of a representative soft site in Nanjing city is calculated with the dynamic behavior of soils modeled by the new developed model. The results are accordant to the earthquake response of soft site given by other scholars.

关键词: developed     dynamic     surface     inverted     appropriate    

Closed surface modeling with helical line measurement data

LI Ruqiong, LI Guangbu, WANG Yuhan

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 72-76 doi: 10.1007/s11465-007-0012-z

摘要: Models for surface modeling of free-form surface and massive data points are becoming an important feature in commercial computer aided design/computer-aided manufacturing software. However, there are many problems to be solved in this area, especially for closed free-form surface modeling. This article presents an effective method for cloud data closed surface modeling from asynchronous profile modeling measurement. It includes three steps: first, the cloud data are preprocessed for smoothing; second, a helical line is segmented to form triangle meshes; and third, Bezier surface patches are created over a triangle mesh and trimmed to shape on an entire surface. In the end, an illustrative example of shoe last surface modeling is given to show the availability of this method.

关键词: free-form surface     helical     triangle     design/computer-aided manufacturing     effective    

hydrodynamics based numerical study of hydroplaning considering permeability characteristics of runway surface

《结构与土木工程前沿(英文)》 2024年 第18卷 第3期   页码 319-333 doi: 10.1007/s11709-024-0969-2

摘要: The presence of water films on a runway surface presents a risk to the landing of aircraft. The tire of the aircraft is separated from the runway due to a hydrodynamic force exerted through the water film, a phenomenon called hydroplaning. Although a lot of numerical investigations into hydroplaning have been conducted, only a few have considered the impact of the runway permeability. Hence, computational problems, such as excessive distortion and computing efficiency decay, may arise with such numerical models when dealing with the thin water film. This paper presents a numerical model comprising of the tire, water film, and the interaction with the runway, applying a mathematical model using the smoothed particle hydrodynamics and finite element (SPH-FE) algorithm. The material properties and geometric features of the tire model were included in the model framework and water film thicknesses from 0.75 mm to 7.5 mm were used in the numerical simulation. Furthermore, this work investigated the impacts of both surface texture and the runway permeability. The interaction between tire rubber and the rough runway was analyzed in terms of frictional force between the two bodies. The SPH-FE model was validated with an empirical equation proposed by the National Aeronautics and Space Administration (NASA). Then the computational efficiency of the model was compared with the traditional coupled Eulerian-Lagrangian (CEL) algorithm. Based on the SPH-FE model, four types of the runway (Flat, SMA-13, AC-13, and OGFC-13) were discussed. The simulation of the asphalt runway shows that the SMA-13, AC-13, and OGFC-13 do not present a hydroplaning risk when the runway permeability coefficient exceeds 6%.

关键词: SPH-FE approach     hydroplaning     numerical simulation     surface texture     runway surface reconstruction    

标题 作者 时间 类型 操作

Predictive model to decouple the contributions of friction and plastic deformation to machined surfacetemperatures and residual stress patterns in finish dry cutting

Subhash ANURAG, Yuebin GUO,

期刊论文

Effect of magneto rheological damper on tool vibration during hard turning

P. Sam PAUL, A. S. VARADARAJAN

期刊论文

Cell surface protein engineering for high-performance whole-cell catalysts

Hajime Nakatani,Katsutoshi Hori

期刊论文

An Exploration of Surface Integrity Remanufacturing for Aeroengine Components

Qiao Xiang,Yong He,Ting-hong Hou

期刊论文

Tribological study on the surface modification of metal-on-polymer bioimplants

期刊论文

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

期刊论文

Development of surface reconstruction algorithms for optical interferometric measurement

Dongxu WU, Fengzhou FANG

期刊论文

Dynamic response surface methodology using Lasso regression for organic pharmaceutical synthesis

期刊论文

Hysteretic behavior of cambered surface steel tube damper: Theoretical and experimental research

期刊论文

Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent

Huan GU, Dacheng REN

期刊论文

Fractal characteristic evaluation and interpolation reconstruction for surface topography of drilled

期刊论文

Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored

Shuai Liang, Peng Gao, Xiaoqi Gao, Kang Xiao, Xia Huang

期刊论文

Dynamic visco-plastic memorial nested yield surface model of soil

ZHUANG Haiyang, CHEN Guoxing, ZHU Dinghua

期刊论文

Closed surface modeling with helical line measurement data

LI Ruqiong, LI Guangbu, WANG Yuhan

期刊论文

hydrodynamics based numerical study of hydroplaning considering permeability characteristics of runway surface

期刊论文