Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 6 doi: 10.15302/J-SSCAE-2023.07.020

Construction and Application of Mineral Flotation Adsorption Equilibrium Model: Accurately Analyze Ions / Reagents Adsorption Behavior on Mineral Surface

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

Funding project:National Natural Science Foundation project (U1704252, 52104286) Received: 2022-12-24 Revised: 2023-01-11 Available online: 2023-07-24

Next Previous

Abstract

The mineral flotation adsorption equilibrium model is a mathematical model to accurately describe ions/reagents adsorption equilibrium involved in mineral flotation. It is the first time to realize quantitative affinity analysis between mineral surface sites and flotation reagents. There is a lack of scientific explanation for the traditional flotation theory on the surface-active sites, and the adsorption capacity and equilibrium state of flotation reagents are also difficult to clarify, making new reagent design mainly based on empirical methods such as trial-and-error method and compound method. Besides, if selective adsorption, as the core mechanism of flotation, cannot be precisely predicted, the development of intelligent control on flotation process will be seriously limited. This study discussed in detail the construction principle of the mineral flotation adsorption equilibrium model, taking two flotation systems of hematite-quartz and diaspore-kaolinite as examples. The constants containing site density Ns, protonation / deprotonation equilibrium constants Kt1/Kt2, and reagent adsorption constant Kf can be deduced and verified successfully. Based on these constants, mineral surface electricity and ions/reagents adsorption behavior can be forecasted. Furthermore, a kind of kernel algorithm about the mineral flotation prediction system was created through Zeta potential tests and some other verification methods. Using this algorithm, the preliminary and accurate prediction of reagent adsorption on each mineral surface at different conditions can reflect its floatability trend to a certain extent, which helps to shorten the flotation technology development cycle. It is also of great significance in the study of mineral surface reagent adsorption mechanisms, flotation reagent molecular design, and flotation process optimization and intelligent control.

 

Figures

图1

图2

图3

图4

图5

References

[ 1 ] 印万忠‍‍. 浮选工艺流程的变革与优化 [C]‍. 合肥: (第五届)中国矿业科技大会, 2014‍.
Yin W Z‍. Reform and optimization of flotation process [C]‍. Hefei: 2014 (The Fifth) China Mining Science and Technology Conference, 2014‍.

[ 2 ] 孙传尧, 周俊武, 贾木欣, 等‍. 基因矿物加工工程研究 [J]‍. 有色金属 (选矿部分), 2018 (1):1‒7‍.
Sun C Y, Zhou J W, Jia M X, et al‍. Research on genetic mineral processing engineering [J]‍. Nonferrous Metals (Mineral Processing Section), 2018 (1): 1‒7‍.

[ 3 ] Shean B J, Cilliers J J‍. A review of froth flotation control [J]‍. International Journal of Mineral Processing, 2011, 100: 57‒71‍.

[ 4 ] 张卿, 饶明生, 张林龙, 等‍. 复杂高品位硫氧混合铜浮选智能控制技术 [J]‍. 矿冶, 2021, 30(4): 129‒134
Zhang Q, Rao M S, Zhang L L, et al‍. Intelligent control technology of complex high-grade sulfur-oxygen mixed copper flotation [J]‍. Mining & Metallurgy, 2021, 30(4): 129‒134‍.

[ 5 ] 王旭, 赵博实‍. 铜浮选流程智能控制系统设计与应用 [J]‍. 有色冶金设计与研究, 2019, 40(5): 5‒9‍.
Wang X, Zhao B S‍. Design and application of lntelligent control system for copper flotation processes [J]‍. Nonferrous Metals Engineering & Research, 2019, 40(5): 5‒9‍.

[ 6 ] Putz E, Cipriano A‍. Hybrid model predictive control for flotation plants [J]‍. Minerals Engineering, 2015, 70: 26‒35‍.

[ 7 ] 孔繁苗‍. 基于数据驱动的浮选过程智能控制 [D]‍. 徐州: 中国矿业大学 (硕士学位论文), 2019‍.
Kong F M‍. Intelligent control of flotation process based on data-driven [D]‍. Xuzhou: China University of Mining and Technology (Master´s thesis), 2019‍.

[ 8 ] 毛浩, 郝强‍. 张家峁智能化选煤厂的研究与设计 [J]‍. 中国煤炭, 2017, 43(10): 82‒87‍.
Mao H, Hao Q‍. Research and design of Zhangjiamao intelligent coal preparation plant [J]‍. China Coal, 2017, 43(10): 82‒87‍.

[ 9 ] 王淀佐‍. 矿物浮选和浮选剂:理论与实践 [M]‍. 长沙: 中南工业大学出版社, 1986‍.
Wang D Z‍. Mineral flotation and reagent: principle and application [M]‍. Changsha: Central South University Press, 1986‍.

[10] 陈建华‍. 浮选配位化学原理 [M]‍. 北京: 科学出版社, 2021‍.
Chen J H‍. Coordination chemistry of flotation [M]‍. Beijing: Science Press, 2021‍.

[11] Liu G Y, Xiao J J, Zhou D W, et al‍. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption [J]‍. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013 (434): 243‒252.

[12] Zhao G, Zhong H, Qiu X Y, et al‍. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation [J]‍. Minerals Engineering, 2013 (49): 54‒60‍.

[13] Yang X L, Liu S, Liu G Y, et al‍. A DFT study on the structure-reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors [J]‍. Journal of Industrial and Engineering Chemistry, 2017 (46): 404‒415‍.

[14] 孙伟, 杨帆, 胡岳华, 等‍. 前线轨道在黄铜矿捕收剂开发中的应用 [J]‍. 中国有色金属学报, 2009, 19: 1524‒1532
Sun W, Yang F, Hu Y H, et al‍. Application of frontier orbital in developing new collectors of chalcopyrite [J]‍. The Chinses Journal of Nonferrous Metals, 2009, 19: 1524‒1532‍.

[15] Pan Z Z, Li W L, Fortner J D, et al‍. Measurement and surface complexation modeling of U(VI) adsorption to engineered iron oxide nanoparticles [J]‍. Environmental Science & Technology, 2017, 51(16): 9219‒9226‍.

[16] Li Y, Zhao X P, Wu J T, et al‍. Surface complexation modeling of divalent metal cation adsorption on birnessite [J]‍. Chemical Geology, 2020, 551: 119774‍.

[17] Sun Y B, Li Y‍. Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review [J]‍. Environmental Pollution, 2021, 278: 116861‍.

[18] 吴江彤, 曾安容, 李清兰, 等‍. 重金属 ‒ 柠檬酸 ‒ 针铁矿三元体系的表面络合模型研究 [J]‍. 环境化学, 2021, 40(2): 520‒530‍.
Wu J T, Zeng A R, Li Q L, et al‍. Development of surface complexation model of heavy metal-citric acid-goethite ternary system [J]‍. Environmental Chemistry, 2021, 40(2): 520‒530‍.

[19] Hiemstra T, Mia S, Duhaut P-B, et al‍. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate [J]‍. Environmental Science & Technology, 2013 (47): 9182‒9189‍.

[20] Goldberg S‍. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems [J]‍. Geochimica et Cosmochimica Acta, 1992 (57): 205‍.

[21] 渠晨晨‍. 土壤矿物 / 有机物复合体固定重金属的表面络合模型研究 [D]‍. 武汉: 华中农业大学 (博士学位论文), 2019‍.
Qu C C‍. Surface complexation modeling of heavy metals binding on soil mineral-organic composites [D]‍. Wuhan: Huazhong Agricultural University (Doctoral dissertation), 2019‍.

[22] Ramos M E, Emiroglu C, García D, et al‍. Modeling the adsorption of oxalate onto montmorillonite [J]‍. Langmuir, 2015 (31): 11825‒11834‍.

[23] Liu Y, Alessi D S, Flynn S L, et al‍. Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength [J]‍. Chemical Geology, 2018 (483): 191‒200‍.

[24] 黄磊, 方红卫, 王靖宇, 等‍. 天然石英砂的表面络合模型研究 [J]‍. 环境科学学报, 2014 (34): 1141‒1149‍.
Huang L, Fang H W, Wang J Y, et al‍. Surface complexation model for quartz sand particles [J]‍. Acta Scientiae Circumstantiae, 2014 (34): 1141‒1149‍.

[25] 王宁‍. 镉在蒙脱石 / 高岭石 ‒ 枯草芽孢杆菌复合体上吸附的表面络合模型研究 [D]‍. 武汉: 华中农业大学 (硕士学位论文), 2015‍.
Wang N‍. Surface complexation modeling of Cd(Ⅱ) adsorption on montmorillonite/kaolinite-bacillus subtilis composites [D]‍. Wuhan: Huazhong Agricultural University (Master´s thesis), 2015‍.

[26] Karimzadeh L, Barthen R, Stockmann M, et al‍. Effect of glutamic acid on copper sorption onto kaolinite-Batch experiments and surface complexation modeling [J]‍. Chemosphere, 2017, 178: 277‒281‍.

[27] Jolsterå R, Gunneriusson L, Forsling W‍. Adsorption and surface complex modeling of silicates on maghemite in aqueous suspensions [J]‍. Journal of Colloid and Interface Science, 2010, 342 (2): 493‒498‍.

[28] Yue T, Sun W, Hu Y H, et al‍. Mechanism of goethite precipitation on magnetite and maghemite nanoparticles studied by surface complexation/precipitation modeling [J]‍. Langmuir, 2018, 34(50): 15134‒15142‍.

[29] Kosmulski M‍. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature [J]‍. Advances in Colloid and Interface Science, 2009 (152): 14‒25‍.

[30] Tertre E, Castet S, Berger G, et al‍. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 ℃: Experimental and modeling study [J]‍. Geochimica et Cosmochimica Acta, 2006 (70): 4579‒4599‍.

[31] Zhang N, Nguyen A V, Zhou C‍. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources [J]‍. Advances in Colloid and Interface Science, 2018 (254): 56‒75‍.

Related Research