Resource Type

Journal Article 774

Conference Videos 29

Conference Information 22

Year

2024 1

2023 86

2022 98

2021 93

2020 73

2019 44

2018 44

2017 68

2016 26

2015 16

2014 15

2013 7

2012 17

2011 12

2010 21

2009 12

2008 22

2007 27

2006 26

2005 25

open ︾

Keywords

Multi-agent system 8

Multi-agent systems 6

Reinforcement learning 5

numerical simulation 5

5G 4

Deep learning 4

optimization 4

shock wave 4

3D printing 3

6G 3

Artificial intelligence 3

Autonomous driving 3

Additive manufacturing 2

Antenna-in-package (AiP) 2

Big data 2

COVID-19 2

Machine learning 2

Massive MIMO 2

Multi-model 2

open ︾

Search scope:

排序: Display mode:

Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond Research Articles

Zhao Yi, Weixia Zou, Xuebin Sun,yz17tx@bupt.edu.cn,zwx0218@bupt.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 6,   Pages 777-789 doi: 10.1631/FITEE.2000515

Abstract: (mmWave) has been claimed as the viable solution for high-bandwidth s in 5G and beyond. To realize applications in future s, it is important to take a robust mmWave vehicular network into consideration. However, one challenge in such a network is that mmWave should provide an ultra-fast and high-rate data exchange among vehicles or vehicle-to-infrastructure (V2I). Moreover, traditional real-time strategies are unavailable because vehicle mobility leads to a fast variation mmWave channel. To overcome these issues, a approach for mmWave V2I communications is proposed in this paper. Specifically, by considering a fast-moving vehicle secnario, a corresponding mathematical model for a fast channel is first established. Then, the temporal variation rule between the base station and each mobile user and the determined direction-of-arrival are used to predict the channel prior information (PI). Finally, by exploiting the PI and the characteristics of the channel, the channel is estimated. The simulation results show that the scheme in this paper outperforms traditional ones in both normalized mean square error and sum-rate performance in the mmWave vehicular system.

Keywords: 大规模多入多出;毫米波;信道估计;车辆通信;时变    

Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array

Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue,wangzq@std.uestc.edu.cn,842927584@qq.com,junwang@uestc.edu.cn,yuegr@uestc.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 560-570 doi: 10.1631/FITEE.2000451

Abstract: An can be deployed in high-throughput communication systems to increase the transmission distance. However, when the signal bandwidth is large, the antenna array response changes with the frequency, causing . In this paper, we investigate the effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme. Specifically, we first view analog beamforming and the physical channel as a spatial equivalent channel. The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading. To eliminate the deep fading points in the spatial equivalent channel, an advanced analog beamforming method is proposed based on the (ZC) sequence. Then, the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver. Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the .

Keywords: 超大规模相控阵;毫米波;波束倾斜;Zadoff-Chu;单载波频域均衡    

Multi-user rate and power analysis in a cognitive radio network with massive multi-input multi-output None

Shang LIU, Ishtiaq AHMAD, Ping ZHANG, Zhi ZHANG

Frontiers of Information Technology & Electronic Engineering 2018, Volume 19, Issue 5,   Pages 674-684 doi: 10.1631/FITEE.1700081

Abstract: This paper discusses transmission performance and power allocation strategies in an underlay cognitive radio (CR) network that contains relay and massive multi-input multi-output (MIMO). The downlink transmission performance of a relay-aided massive MIMO network without CR is derived. By using the power distribution criteria, the kth user’s asymptotic signal to interference and noise ratio (SINR) is independent of fast fading. When the ratio between the base station (BS) antennas and the relay antennas becomes large enough, the transmission performance of the whole system is independent of BS-to-relay channel parameters and relates only to the relay-to-users stage. Then cognitive transmission performances of primary users (PUs) and secondary users (SUs) in an underlay CR network with massive MIMO are derived under perfect and imperfect channel state information (CSI), including the end-to-end SINR and achievable sum rate. When the numbers of primary base station (PBS) antennas, secondary base station (SBS) antennas, and relay antennas become infinite, the asymptotic SINR of the PU and SU is independent of fast fading. The interference between the primary network and secondary network can be canceled asymptotically. Transmission performance does not include the interference temperature. The secondary network can use its peak power to transmit signals without causing any interference to the primary network. Interestingly, when the antenna ratio becomes large enough, the asymptotic sum rate equals half of the rate of a single-hop single-antenna K-user system without fast fading. Next, the PUs’ utility function is defined. The optimal relay power is derived to maximize the utility function. The numerical results verify our analysis. The relationships between the transmission rate and the antenna number, relay power, and antenna ratio are simulated. We show that the massive MIMO with linear pre-coding can mitigate asymptotically the interference in a multi-user underlay CR network. The primary and secondary networks can operate independently.

Keywords: Massive multi-input multi-output     Cognitive radio     Relay network     Transmission rate     Power analysis    

Integrated communication and localization in millimeter-wave systems

Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao,yangjie@seu.edu.cn,shadowaccountxj@foxmail.com,li_xiao@seu.edu.cn,jinshi@seu.edu.cn,gao.bo1@zte.com.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 457-470 doi: 10.1631/FITEE.2000505

Abstract: As the fifth-generation (5G) mobile communication system is being commercialized, extensive studies on the evolution of 5G and sixth-generation (6G) mobile communication systems have been conducted. Future mobile communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality paradigm that can provide ubiquitous communication, as well as sense, control, and optimize wireless environments. Thus, integrating communication and localization using the highly directional transmission characteristics of millimeter waves (mmWaves) is a promising route. This approach not only expands the localization capabilities of a communication system but also provides new concepts and opportunities to enhance communication. In this paper, we explain the in mmWave systems, in which these processes share the same set of hardware architecture and algorithms. We also provide an overview of the key enabling technologies and the basic knowledge on localization. Then, we provide two promising directions for studies on localization with an and model-based (or model-driven) . We also discuss a comprehensive guidance for location-assisted mmWave communications in terms of channel estimation, channel state information feedback, beam tracking, synchronization, interference control, resource allocation, and user selection. Finally, we outline the future trends on the mutual assistance and enhancement of communication and localization in integrated systems.

Keywords: 毫米波;通信定位一体化;位置辅助通信;超大规模天线阵列;可重构智能表面;人工智能;神经网络    

Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection

Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang,taozhou@bjtu.edu.cn,17120045@bjtu.edu.cn,chxwang@seu.edu.cn,jiayizhang@bjtu.edu.cn,liuliu@bjtu.edu.cn,liangyiqun@139.com

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 571-585 doi: 10.1631/FITEE.2000509

Abstract: In this study, we consider a multi-cell (mmWave) system with a (mixed-ADC) and hybrid beamforming architecture, in which is applied to achieve intelligent assignment of high- and low-resolution ADCs. Both exact and approximate closed-form expressions for the uplink achievable rate are derived in the case of maximum-ratio combining reception. The impacts on the achievable rate of user transmit power, number of radio frequency chains at a base station, ratio of high-resolution ADCs, number of propagation paths, and number of quantization bits are analyzed. It is shown that the user transmit power can be scaled down inversely proportional to the number of antennas at the base station. We propose an efficient power allocation scheme by solving a complementary geometric programming problem. In addition, the energy efficiency is investigated, and an optimal tradeoff between the achievable rate and power consumption is discussed. Our results will provide a useful reference for the study of mixed-ADC multi-cell mmWave massive MIMO systems with .

Keywords: 毫米波;大规模多输入多输出;混合模拟-数字转换器;性能分析;天线选择    

Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments

Peize Zhang, Haiming Wang, Wei Hong,pzzhang@seu.edu.cn,hmwang@seu.edu.cn,weihong@seu.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 471-487 doi: 10.1631/FITEE.2000489

Abstract: The deployment of millimeter-wave (mmWave) cellular systems in dense urban environments with an acceptable coverage and cost-efficient transmission scheme is essential for the rollout of fifth-generation and beyond technology. In this paper, cluster-based analysis of mmWave channel characteristics in two typical dense urban environments is performed. First, radio campaigns are conducted in two identified mmWave bands of 28 and 39 GHz in a central business district and a dense residential area. The custom-designed channel sounder supports high-efficiency directional scanning sounding, which helps collect sufficient data for statistical channel modeling. Next, using an improved auto- algorithm, multipath clusters and their scattering sources are identified. An appropriate measure for inter- and intra-cluster characteristics is provided, which includes the cluster number, the Ricean -factor, root-mean-squared (RMS) delay spread, RMS angular spread, and their correlations. Comparisons of these parameters across two mmWave bands for both line-of-sight (LoS) and non-light-of-sight (NLoS) links are given. To shed light on the blockage effects, detailed analysis of the propagation mechanisms corresponding to each NLoS cluster is provided, including reflection from exterior walls and over building corners and rooftops. Finally, the results show that the cluster-based analysis takes full advantage of mmWave beamspace channel characteristics and has further implications for the design and deployment of mmWave wireless networks.

Keywords: 毫米波通信;分簇;绕射;多路通道;传播测量    

Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems

Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong,qiqiz@hust.edu.cn,xiongxusheng@hust.edu.cn,qli_patrick@hust.edu.cn,hantao@hust.edu.cn,yzhong@hust.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 527-547 doi: 10.1631/FITEE.2000444

Abstract: In recent years, the conventional degrees of freedom in frequency and time have been fully used. It is difficult to further improve the performance of communication systems with such degrees of freedom. , which provides a new degree of freedom for millimeter-wave (mmWave) wireless communication systems, has been recognized as a key enabling technique for future mobile communication networks. By combining OAM beams that have theoretically infinite and mutually orthogonal states with the strategy, a new OAM-GSM mmWave wireless communication system is designed in this paper. A model of the OAM-GSM system is established based on channel flip precoding. The , , and BER of the proposed OAM-GSM mmWave wireless communication system are simulated. Numerical results show that, compared with traditional GSM systems, the OAM-GSM system has more complex transmission and reception mechanisms but the and maximum achievable are increased by 80% and 54%, respectively, and the BER drops by 91.5%.

Keywords: 轨道角动量;广义空间调制;毫米波通信;信道容量;能量效率;误比特率    

Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside

Xichen Liu, Lin Yang, Daizhong Yu,362475709@qq.com,eelyang@uestc.edu.cn,15908107465@163.com

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 503-516 doi: 10.1631/FITEE.2000464

Abstract: With the increased demand for unmanned driving technology and big-data transmission between vehicles, (mmWave) technology, due to its characteristics of large bandwidth and low latency, is considered to be the key technology in future vehicular communication systems. Different from traditional cellular communication, the vehicular communication environment has the characteristics of long distance and high moving speed. However, the existing communication channel tests mostly select low-speed and small-range communication scenarios for testing. The test results are insufficient to provide good data support for the existing vehicular communication research; therefore, in this paper, we carry out a large number of channel measurements in mmWave vehicle-to-infrastructure (V2I) long-distance communication scenarios in the 41 GHz band. We study the received signal strength (RSS) in detail and find that the vibration features of RSS can be best modeled by the modified considering road roughness. Based on the obtained RSS, a novel close-in (CI) model considering the effect of the transmitter (TX) and receiver (RX) antenna heights (CI-TRH model) is developed. As for the channel characteristics, the distribution of the root-mean-square (RMS) delay spread is analyzed. We also extend the two-section exponential (PDP) model to a more general form so that the distance-dependent features of the mmWave channel can be better modeled. Furthermore, the variation in both RMS delay spread and PDP shape parameters with TX-RX distance is analyzed. Analysis results show that TX and RX antenna heights have an effect on large-scale fading. Our modified , CI-TRH model, and two-section exponential PDP model are proved to be effective.

Keywords: 毫米波;两径模型;均方根时延扩展;功率延迟分布;CI-TRH路径损耗模型    

Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations

Wei Fan, Lassi Hentilä, Pekka Kyösti,wfa@es.aau.dk

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 4,   Pages 548-559 doi: 10.1631/FITEE.2000484

Abstract: Millimeter-wave (mmWave) communication is regarded as the key enabling component for fifth-generation (5G) cellular systems due to the large available spectrum bandwidth. To make mmWave new radio (NR) a reality, tremendous efforts have been exerted from the industry and academia. Performance evaluation of mmWave NR is a mandatory step and the key to ensuring the success of mmWave 5G deployment. Over-the-air (OTA) radiated method of testing mmWave NR in laboratory conditions is highly attractive, since it facilitates virtual field testing of mmWave devices in realistic propagation conditions. In this paper, we first discuss the need for and challenges in OTA measurement of mmWave 5G NR under fading channel conditions. After that, two promising candidate solutions, i.e., wireless cable and multi-probe anechoic chamber (MPAC), are detailed. Their principles, applicability for mmWave NR, and main challenges are discussed. Furthermore, preliminary experimental validation results in a frequency range 2 anechoic chamber are demonstrated for the wireless cable and MPAC methods at 28 GHz.

Keywords: 空间信道模型;空口测试;无线线缆;多探头电波暗室;FR2验证    

Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research Review

Ehab ALI, Mahamod ISMAIL, Rosdiadee NORDIN, Nor Fadzilah ABDULAH

Frontiers of Information Technology & Electronic Engineering 2017, Volume 18, Issue 6,   Pages 753-772 doi: 10.1631/FITEE.1601817

Abstract: Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra- and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.

Keywords: Beamforming classifications     Massive MIMO     Hybrid beamforming     Millimetre-wave beamforming    

A 39 GHz Dual-Channel Transceiver Chipset With an Advanced LTCC Package for 5G Multi-Beam MIMO Systems Aticle

Yiming Yu,Zhilin Chen,Chenxi Zhao,Huihua Liu,Yunqiu Wu,Wen-Yan Yin,Kai Kang

Engineering 2023, Volume 22, Issue 3,   Pages 125-140 doi: 10.1016/j.eng.2022.04.023

Abstract:

This article presents a 39 GHz transceiver front-end chipset for 5G multi-input multi-output (MIMO) applications. Each chip includes two variable-gain frequency-conversion channels and can support two simultaneous independent beams, and the chips also integrate a local-oscillator chain and digital module for multi-chip extension and gain-state control. To improve the radio-frequency performance, several circuit-level improvement techniques are proposed for the key building blocks in the front-end system. Furthermore, an advanced low-temperature co-fired ceramic process is developed to package the 39 GHz dual-channel transceiver chipset, and it achieves low packaging loss and high isolation between the two transmitting (TX)/receiving (RX) channels. Both the chip-level and system-in-package (SIP)-level measurements are conducted to demonstrate the performance of the transceiver chipset. The measurement characteristics show that the TX SIP provides 11 dB maximum gain and 10 dBm saturated output power, while the RX SIP achieves 52 dB maximum gain, 5.4 dB noise figure, and 7.2 dBm output 1 dB compression point. Single-channel communication link testing of the transceiver exhibits an error vector magnitude (EVM) of 3.72% and a spectral efficiency of 3.25 bit·s−1·Hz−1 for 64-quadrature amplitude modulation (QAM) modulation and an EVM of 3.76% and spectral efficiency of 3.9 bit·s−1·Hz−1 for 256-QAM modulation over a 1 m distance. Based on the chipset, a 39 GHz multi-beam prototype is also developed to perform the MIMO operation for 5G millimetre wave applications. The over-the-air communication link for one- and two-stream transmission indicates that the multi-beam prototype can cover a 5–150 m distance with comparable throughput.

Keywords: 5G     Multi-beam     Multi-input multi-output     Millimeter-wave     Transceiver     Wireless communication    

Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system Article

Ruo-yu ZHANG, Hong-lin ZHAO, Shao-bo JIA

Frontiers of Information Technology & Electronic Engineering 2017, Volume 18, Issue 12,   Pages 2082-2100 doi: 10.1631/FITEE.1601635

Abstract: Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.

Keywords: Compressed sensing     Multi-user massive multiple input multiple output (MIMO)     Frequency-division duplexing     Structured joint channel estimation     Pilot overhead reduction    

A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications Research Articles

Qiuming Zhu, Mengtian Yao, Fei Bai, Xiaomin Chen, Weizhi Zhong, Boyu Hua, Xijuan Ye,zhuqiuming@nuaa.edu.cn,yaomengtian@nuaa.edu.cn,baifei@nuaa.edu.cn,chenxm402@nuaa.edu.cn,zhongwz@nuaa.edu.cn,byhua@nuaa.edu.cn,yexijuan@nuaa.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 6,   Pages 767-776 doi: 10.1631/FITEE.2000497

Abstract: A general empirical (PL) model for air-to-ground (A2G) millimeter-wave (mmWave) channels is proposed in this paper. Different from existing PL models, the new model takes the height factor of unmanned aerial vehicles (UAVs) into account, and divides the propagation conditions into three cases (i.e., line-of-sight, reflection, and diffraction). A map-based deterministic PL prediction algorithm based on the (RT) technique is developed, and is used to generate numerous PL data for different cases. By fitting and analyzing the PL data under different scenarios and UAV heights, model parameters are provided. Simulation results show that the proposed model can be effectively used to predict PL values for both low- and high-altitude cases. The prediction results of the proposed model better match the RT-based calculation results than those of the Third Generation Partnership Project (3GPP) model and the close-in model. The standard deviation of the PL is also much smaller. Moreover, the new model is flexible and can be extended to other A2G scenarios (not included in this paper) by adjusting the parameters according to the simulation or measurement data.

Keywords: 传播损耗;无人机对地信道;毫米波通信信道;射线追踪;高度相关    

Polarizationmultiplexing based duplex radio-over-fiber link for millimeterwave signal transmission to a ring of multiple radio access units None

Tayyab MEHMOOD, Hina QAYYUM, Salman GHAFOOR

Frontiers of Information Technology & Electronic Engineering 2019, Volume 20, Issue 2,   Pages 300-306 doi: 10.1631/FITEE.1700056

Abstract:

A radio-over-fiber (RoF) distributed antenna system (DAS) architecture is proposed, where millimeter wave (mm-wave) signals are transmitted to four different radio access units (RAUs) arranged in a ring topology. The proposed architecture transmits duplex data of 128 Mb/s to each RAU in both downlink (DL) and uplink (UL) directions. The radio frequency (RF) signals are transmitted by polarization multiplexing a multi-wavelength source. Millimeter-wave signals at a frequency of 25 GHz are generated at each RAU using remote heterodyne detection. The proposed architecture provides increased coverage while maintaining good bit error rate (BER) results.

Keywords: Radio over fiber     Millimeter wave     Radio access units    

Joint DOA and channel estimation with data detection based on 2D unitary ESPRITin massive MIMO systems Article

Jing-ming KUANG, Yuan ZHOU, Ze-song FEI

Frontiers of Information Technology & Electronic Engineering 2017, Volume 18, Issue 6,   Pages 841-849 doi: 10.1631/FITEE.1700025

Abstract: We propose a novel method for joint two-dimensional (2D) direction-of-arrival (DOA) and channel estimation with data detection for uniform rectangular arrays (URAs) for the massive multiple-input multiple-output (MIMO) systems. The conventional DOA estimation algorithms usually assume that the channel impulse responses are known exactly. However, the large number of antennas in a massive MIMO system can lead to a challenge in estimating accurate corresponding channel impulse responses. In contrast, a joint DOA and channel estimation scheme is proposed, which first estimates the channel impulse responses for the links between the transmitters and antenna elements using training sequences. After that, the DOAs of the waves are estimated based on a unitary ESPRIT algorithm using previous channel impulse response estimates instead of accurate channel impulse responses and then, the enhanced channel impulse response estimates can be obtained. The proposed estimator enjoys closedform expressions, and thus it bypasses the search and pairing processes. In addition, a low-complexity approach toward data detection is presented by reducing the dimension of the inversion matrix in massive MIMO systems. Different cases for the proposed method are analyzed by changing the number of antennas. Experimental results demonstrate the validity of the proposed method.

Keywords: Two-dimensional (2D) direction-of-arrival (DOA) estimation     Channel impulse response estimation     Data detection     Uniform rectangular array (URA)     Massive multiple-input multiple-output (MIMO)    

Title Author Date Type Operation

Prior information based channel estimation for millimeter-wave massive MIMO vehicular communications in 5G and beyond

Zhao Yi, Weixia Zou, Xuebin Sun,yz17tx@bupt.edu.cn,zwx0218@bupt.edu.cn

Journal Article

Beam squint effect on high-throughput millimeter-wave communication with an ultra-massive phased array

Zhiqiang Wang, Jiawei Liu, Jun Wang, Guangrong Yue,wangzq@std.uestc.edu.cn,842927584@qq.com,junwang@uestc.edu.cn,yuegr@uestc.edu.cn

Journal Article

Multi-user rate and power analysis in a cognitive radio network with massive multi-input multi-output

Shang LIU, Ishtiaq AHMAD, Ping ZHANG, Zhi ZHANG

Journal Article

Integrated communication and localization in millimeter-wave systems

Jie Yang, Jing Xu, Xiao Li, Shi Jin, Bo Gao,yangjie@seu.edu.cn,shadowaccountxj@foxmail.com,li_xiao@seu.edu.cn,jinshi@seu.edu.cn,gao.bo1@zte.com.cn

Journal Article

Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection

Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang,taozhou@bjtu.edu.cn,17120045@bjtu.edu.cn,chxwang@seu.edu.cn,jiayizhang@bjtu.edu.cn,liuliu@bjtu.edu.cn,liangyiqun@139.com

Journal Article

Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments

Peize Zhang, Haiming Wang, Wei Hong,pzzhang@seu.edu.cn,hmwang@seu.edu.cn,weihong@seu.edu.cn

Journal Article

Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems

Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong,qiqiz@hust.edu.cn,xiongxusheng@hust.edu.cn,qli_patrick@hust.edu.cn,hantao@hust.edu.cn,yzhong@hust.edu.cn

Journal Article

Empirical study on directional millimeter-wave propagation in vehicle-to-infrastructure communications between road and roadside

Xichen Liu, Lin Yang, Daizhong Yu,362475709@qq.com,eelyang@uestc.edu.cn,15908107465@163.com

Journal Article

Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations

Wei Fan, Lassi Hentilä, Pekka Kyösti,wfa@es.aau.dk

Journal Article

Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research

Ehab ALI, Mahamod ISMAIL, Rosdiadee NORDIN, Nor Fadzilah ABDULAH

Journal Article

A 39 GHz Dual-Channel Transceiver Chipset With an Advanced LTCC Package for 5G Multi-Beam MIMO Systems

Yiming Yu,Zhilin Chen,Chenxi Zhao,Huihua Liu,Yunqiu Wu,Wen-Yan Yin,Kai Kang

Journal Article

Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system

Ruo-yu ZHANG, Hong-lin ZHAO, Shao-bo JIA

Journal Article

A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications

Qiuming Zhu, Mengtian Yao, Fei Bai, Xiaomin Chen, Weizhi Zhong, Boyu Hua, Xijuan Ye,zhuqiuming@nuaa.edu.cn,yaomengtian@nuaa.edu.cn,baifei@nuaa.edu.cn,chenxm402@nuaa.edu.cn,zhongwz@nuaa.edu.cn,byhua@nuaa.edu.cn,yexijuan@nuaa.edu.cn

Journal Article

Polarizationmultiplexing based duplex radio-over-fiber link for millimeterwave signal transmission to a ring of multiple radio access units

Tayyab MEHMOOD, Hina QAYYUM, Salman GHAFOOR

Journal Article

Joint DOA and channel estimation with data detection based on 2D unitary ESPRITin massive MIMO systems

Jing-ming KUANG, Yuan ZHOU, Ze-song FEI

Journal Article