资源类型

期刊论文 152

会议视频 4

年份

2024 1

2023 34

2022 15

2021 21

2020 14

2019 9

2018 9

2017 14

2016 5

2015 5

2014 6

2013 7

2012 1

2010 1

2009 3

2008 3

2007 1

2004 1

2003 2

2002 1

展开 ︾

关键词

电动汽车 3

锂离子电池 3

2023全球十大工程成就 2

吸附 2

快速充电 2

荷电状态 2

重金属废水 2

Al@AP/PVDF纳米复合材料 1

Cu(In 1

Ga)Se2 1

G蛋白偶联受体 1

NASICON 1

Nd-Fe-B磨削油泥 1

PDT 1

PEDOT:PSS 1

X射线 1

γ-氨基丁酸A型受体 1

“上限” 1

下一代 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 850-860 doi: 10.1007/s11783-014-0737-y

摘要: The effect of ion-doping on TiO nanotubes were investigated to obtain the optimal TiO nanotubes for the effective decomposition of humic acids (HA) through O /UV/ion-doped TiO process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag , Al , Cu , Fe , V , and Zn were doped into the TiO nanotubes, whereas such activities decreased as a result of Mn - and Ni -doping. In the presence of 1.0 at.% Fe -doped TiO nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min . Fe in TiO could increase the generation of ·OH, which could remove HA. However, Fe in water cannot function as a shallow trapping site for electrons or holes.

关键词: TiO2 nanotubes     ion-doping     humic acids     pseudo-first-order     mechanism    

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1440-1449 doi: 10.1007/s11705-023-2333-9

摘要: The composite electrode of CoNiSx and Ti3C2Tx MXene was successfully prepared using a one-step hydrothermal method under the in-situ doping of the cobalt element. The effects of in-situ doping of the cobalt element on the micromorphology and electrochemical performance of the electrodes were investigated. After in-situ doping of the cobalt element, NiS with a needle-like structure was converted into a CoNiSx with petal-like structure. The petal-like CoNiSx with a rough surface was very dense and evenly wrapped on the surface and interlamination of Ti3C2Tx, which helped increase the specific surface area and pore volume of the electrode. Under the identical test conditions, CoNiSx@Ti3C2Tx had a higher specific capacitance and capacitance retention than NiS@Ti3C2Tx. This result indicated that the in-situ doping of the cobalt element promoted the electrochemical performance of the electrode. The energy density of the CoNiSx@Ti3C2Tx/nickel foam (NF)//activated carbon (AC)/NF asymmetric supercapacitor device was 59.20 Wh·kg–1 at a power density of 826.73 W·kg–1, which was much higher than that of NiS@Ti3C2Tx/NF//AC/NF. Three CoNiSx@Ti3C2Tx/NF//AC/NF in series were able to illuminate the light emitting diode lamp for about 10 min, which was higher than the 5 min of three NiS@Ti3C2Tx/NF//AC/NF in series under the same condition. The CoNiSx@Ti3C2Tx/NF//AC/NF with high energy density had better application potential in energy storage than the NiS@Ti3C2Tx/NF//AC/NF.

关键词: MXene     supercapacitor     cobalt doping     structure characterization     electrochemical performance    

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1134-1146 doi: 10.1007/s11705-020-2014-x

摘要: The exploration of cost-effective, high-performance, and stable electrocatalysts for the hydrogen evolution reaction (HER) over wide pH range (0–14) is of paramount importance for future renewable energy conversion technologies. Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities, electron transfer capability, and stability of the HER electrode. Herein, V-doped NiCoP nanosheets on carbon fiber paper (CFP) (denoted as V -NiCoP/CFP) were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER. Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics, the resultant V -NiCoP/CFP demonstrates a significantly improved HER catalytic activity, requiring overpotentials of 46.5, 52.4, and 85.3 mV to reach a current density of 10 mA·cm in 1 mol·L KOH, 0.5 mol·L H SO , and 1 mol·L phosphate buffer solution (PBS) electrolytes, respectively. This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based, highly efficient, and pH-universal electrocatalysts for various energy conversion systems.

关键词: hydrogen evolution reaction     transition metal phosphides     pH-universal     vanadium doping     carbon fiber paper    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1625-0

摘要:

● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.

关键词: Ion-exchange membranes     Selectivity     Separations    

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

《能源前沿(英文)》 2012年 第6卷 第2期   页码 179-183 doi: 10.1007/s11708-012-0177-y

摘要: The open circuit voltage ( ) of small-molecule organic solar cells (OSCs) could be improved by doping suitable fluorescent dyes into the donor layers. In this paper, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) was used as a dopant, and the performance of the OSCs with different DCJTB concentration in copper phthalocyanine (CuPc) was studied. The results showed that the of the OSC with 50% of DCJTB in CuPc increased by 15%, compared with that of the standard CuPc/fullerene (C ) device. The enhancement of the was attributed to the lower highest occupied molecular orbital (HOMO) level in the DCJTB than that in the CuPc. Also, the light absorption intensity is enhanced between 400 and 550 nm, where CuPc and C have low absorbance, leading to a broad absorption spectrum.

关键词: organic solar cells (OSCs)     open circuit voltage     fluorescent dye doping     4-(dicyanomethylene)-2-t-butyl-6-(1     1     7     7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)    

Effects of Pd doping on N

Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0976-9

摘要: N O is a powerful greenhouse gas and plays an important role in destructing the ozone layer. This present work investigated the effects of Pd doping on N O formation over Pt/BaO/Al O catalyst. Three types of catalysts, Pt/BaO/Al O , Pt/Pd mechanical mixing catalyst (Pt/BaO/Al O +Pd/Al O ) and Pt-Pd co-impregnation catalyst (Pt-Pd/BaO/Al O ) were prepared by incipient wetness impregnation method. These catalysts were first evaluated in NSR activity tests using H /CO as reductants and then carefully characterized by BET, CO chemisorption, CO-DRIFTs and H -TPR techniques. In addition, temperature programmed reactions of NO with H /CO were conducted to obtain further information about N O formation mechanism. Compared with Pt/BaO/Al O , (Pt/BaO/Al O +Pd/Al O ) produced less N O and more NH during NO storage and reduction process, while an opposite trend was found over (Pt-Pd/BaO/Al O +Al O ). Temperature programmed reactions of NO with H /CO results showed that Pd/Al O component in (Pt/BaO/Al O +Pd/Al O ) played an important role in NO reduction to NH , and the formed NH could reduce NO to N leading to a decrease in N O formation. Most of N O formed over (Pt-Pd/BaO/Al O +Al O ) was originated from Pd/BaO/Al O component. H -TPR results indicated Pd-Ba interaction resulted in more difficult-to-reduce PdO species over Pd/BaO/Al O , which inhibits the NO dissociation and thus drives the selectivity to N O in NO reduction.

关键词: NOx storage reduction     Pt/BaO/Al2O3     Pd doping     N2O formation     Optimization    

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1539-2

摘要:

• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx.

关键词: NH3-SCR     CeO2 doping     Low-temperature NOx removal     Improved redox property     In situ XAFS analysis    

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

《能源前沿(英文)》   页码 775-781 doi: 10.1007/s11708-023-0902-8

摘要: Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

关键词: cathodes     aqueous zinc-ion batteries     sodium vanadate     alumina     coating    

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1804-7

摘要:

● Cu-C-MSNs are developed via a co-doping step of Cu with L(+)-ascorbic acid.

关键词: Cation-π structures     Polarization electric field     Fenton-like process     Contaminants cleavage    

Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction

Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU

《能源前沿(英文)》 2017年 第11卷 第1期   页码 92-95 doi: 10.1007/s11708-016-0432-8

摘要: Double-layer emitters with different doping concentrations (DLE) have been designed and prepared for amorphous silicon/crystalline silicon (α-Si:H/c-Si) heterojunction solar cells. Compared with the traditional single layer emitter, both the experiment and the simulation (AFORS-HET, http://www.paper.edu.cn/html/releasepaper/2014/04/282/) prove that the double-layer emitter increases the short circuit current of the cells significantly. Based on the quantum efficiency (QE) results and the current-voltage-temperature analysis, the mechanism for the experimental results above has been investigated. The possible reasons for the increased current include the enhancement of the QE in the short wavelength range, the increase of the tunneling probability of the current transport and the decrease of the activation energy of the emitter layers.

关键词: double-layer emitter     α-Si:H/c-Si heterojunction solar cell     short circuit current     quantum efficiency     current-voltage-temperature    

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1244-1253 doi: 10.1007/s11705-022-2293-5

摘要: Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

关键词: zinc-ion battery     CaV8O20     polyaniline coating     synergistic engineering     high capacity     long durability    

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1018-1028 doi: 10.1007/s11705-020-1915-z

摘要: An ion-imprinted sorbent (IIP) was prepared by using Ni as template, 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane as functional monomer, and silica gel as carrier. The adsorption performance of IIP towards Ni was investigated. IIP showed a higher adsorption capacity than that of non-imprinted sorbent, and it also exhibited high selectivity for Ni in the presence of Cu and Zn ions. Then, IIP was used to form a dynamic membrane onto the surface of ceramic membrane for treatment of electroplating wastewater containing Ni . Compared with ceramic membrane, IIP dynamic membrane had much higher steady membrane flux, and also rejected Ni to obtain a lower concentration of Ni in the permeate fluid. Perhaps it is suitable for future practice applications.

关键词: ion-imprinted     nickel ion     dynamic membrane     adsorption    

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1243-1256 doi: 10.1007/s11705-020-2029-3

摘要: Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance. Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials. However, Li recovery in these processes requires lengthy operational procedures, and the recovery efficiency is low. In this research, we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment. Approximately 90% of Li is leached from high-Ni layered oxide cathode powders, while consuming a nearly stoichiometric amount of hydrogen ions. With this selective recovery of Li, the transition metals remain as solid residue hydroxides or oxides. Furthermore, the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials. A high leaching selectivity of Li (>98%) and nearly 95% leaching efficiency of Li can be reached with LiNi Co Mn O . In this case, both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods; furthermore, the proposed method makes full use of H to leach Li . This research is expected to provide new understanding for selectively recovering metal from secondary resources.

关键词: recycling     spent LIBs     selective recovery     hydrothermal treatment    

Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater

Lu WANG, Changgong MENG, Wei MA

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 65-67 doi: 10.1007/s11705-009-0105-9

摘要: Lithium is one of the most important light metals, which is widely used as raw materials for large-capacity rechargeable batteries, light aircraft alloys and nuclear fusion fuel. Seawater, which contains 250 billion tons of lithium in total, has thus recently been noticed as a possible resource of lithium. While, since the average concentration of lithium in seawater is quite low (0.17 mg·L ), enriching it to an adequate high density becomes the primary step for industrial applications. The adsorption method is the most prospective technology for increasing the concentration of lithium in liquid. Among the adsorbents for lithium, the ion-sieve is a kind of special absorbent which has high selectivity for Li , especially the spinel manganese oxides (SMO), which among the series of ion-sieves, has become the most promising adsorption material for lithium. In this study, the SMO ion-sieve was prepared by a coprecipitation method. The preparation conditions were discussed and the sample characters were analyzed. Recovery of Li from seawater were studied in batch experiments using prepared ion-sieve, and the effect of solution pH and the uptake rates were also investigated in different Li solutions.

关键词: lithium     ion-sieve     seawater     spinel manganese oxide    

标题 作者 时间 类型 操作

Effect of metal ion-doping on characteristics and photocatalytic activity of TiO

Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI

期刊论文

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

期刊论文

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

期刊论文

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

期刊论文

Effects of Pd doping on N

Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen

期刊论文

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

期刊论文

Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries

期刊论文

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

期刊论文

Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction

Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU

期刊论文

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coatingfor high performance zinc-ion batteries

期刊论文

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

期刊论文

Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion

Weiguang Lv, Xiaohong Zheng, Li Li, Hongbin Cao, Yi Zhang, Renjie Chen, Hancheng Ou, Fei Kang, Zhi Sun

期刊论文

Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater

Lu WANG, Changgong MENG, Wei MA

期刊论文